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Abstract

Numerical simulations are presented of flows of power-law
fluids through periodic arrays of aligned cylinders, both
creeping flows and flows with finite inertia. Results are
presented for the drag coefficient of the cylinders and are
compared against asymptotically valid analytical results.
Square and hexagonal arrays are considered, both for flow
in the plane perpendicular to the alignment vector of the
cylinders (along the axes of the array as well as off-axis
flows), and for flow along the cylinders. It is shown that
the observed strong dependence of the drag coefficient
on the power-law index (through which the stress tensor
is related to the rate-of-strain tensor) for creeping flows
can be described at all solid area fractions by scaling the
drag on a cylinder with appropriate velocity and length
scales. For flows with finite inertia a similar scaling is
found.

Introduction

The creeping flow of Newtonian fluids through periodic
arrays of cylinders has been studied extensively [7, 2]
mainly because of its importance in many applications
in heat and mass transfer equipment. More recently the
corresponding flows with small-but-finite and intermedi-
ate Reynolds number have been studied (Edwards et al.
[3], Ghaddar [4] and Koch and Ladd [5]).

The literature on non-Newtonian fluid flows through pe-
riodic arrays of cylinders is far less complete, although
these problems have now become of great practical rele-
vance with the increasing popularity of polymer compos-
ite materials. The manufacture of these materials often
involves flow of polymer resin through fibrous materi-
als, as for instance in the resin transfer moulding process
(RTM), in which a polymer resin is injected into a mould
which contains a fibrous preform. The fibres are often
bundled together in dense strands.

The rheology of many non-viscoelastic non-Newtonian
fluids can be approximated by the power-law fluid model,
i.e., by supposing the stress to be proportional to the
shear rate to the power n, where n is the power-law in-
dex [8]. Creeping flows of power-law fluids through pe-
riodic arrays were simulated by Bruschke and Advani [1]
for (transverse) flow in the plane normal to the alignment
vector of the cylinders. Sadiq, Advani and Parnas [6] car-
ried out a variety of experiments with power-law fluids
(with 0.39 ≤ n ≤ 0.54) in square arrays of solid rods, as
well as arrays of fibre bundles. Vijaysri et al. [12] used
a cell model in their simulations of power-law fluid flows
through arrays of cylinders.

The aim of the present contribution is to extend the pre-
vious work on flows of power-law fluids through arrays of
cylinders to off-axis flows (flows in the plane perpendic-
ular to the alignment vector of the cylinders, but with
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e 1: An example of a mesh used for square arrays
fraction φ = 0.3); only the bottom half of the ac-
esh is shown. The computational mesh points are

ed at the cell centres.

ain flow direction not aligned with an axis of the
) and to investigate the effect of finite fluid inertia.

od

ow of power-law fluids is governed by the following
ions of motion, where V is the velocity vector, P
pressure, τ is the viscous part of the stress tensor,
is the density:

j

j
= 0, ρ

∂Vi

∂t
+ ρ

∂

∂xj
(ViVj) = − ∂P

∂xi
+

∂τij

∂xj
. (1)

power-law fluid the viscous part of the stress tensor
ds on the rate-of-strain tensor through [8]

= 2KΠ(n−1)/2Eij , Eij =
1

2

(
∂Vi

∂xj
+

∂Vj

∂xi

)
, (2)

e Π = 2EklEkl is the second invariant of the rate-of-
tensor (where summation over the indices k and l

sumed). K and n are the power-law coefficient and
, respectively. n = 1 corresponds to a Newtonian
and n > 1 to a shear-thickening fluid.

bove equations of motion have been integrated nu-
ally to a steady state for flow through a periodic
over which a pressure drop is imposed. A typical
is shown in Figure 1. The finite-difference, frac-

l step method of Zang, Street and Koseff [14] has
adopted for this purpose; details of the implemen-
of the non-linear stress tensor in this method will

blished in Spelt et al. [9].

lts for creeping flows

applied pressure drop over a unit cell of the array
lanced by the drag force applied to the cylinder in
ell. A simple scaling is used to introduce the drag
cient Cd,

F ≡ Cd(φ, n)Ka1−nUn, (3)
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Figure 2: The drag coefficient Cd of a cylinder in a square
(a) and hexagonal (b) array as a function of power-law
index n for square arrays at area fractions 0.01 (2), 0.1
(∆), 0.2 (©), 0.3 (�), 0.4 (∇), 0.5 (∗) and 0.6 (×). The
filled symbols are numerical simulation results by Tanner
[11] for a single cylinder in an infinite medium. The solid
lines represent the lubrication theory (4). The dashed
lines are (5).

where F is the applied force per unit length of cylinder
and a is the cylinder radius. Because F is simply the
product of the applied pressure drop over the cell and
the area of the face normal to the flow, and is therefore
known, the drag coefficient is obtained from (3) by cal-
culating the magnitude of the cell-averaged fluid velocity
U .

On-axis flows

Cd as a function of power-law index n for on-axis creeping
flows through square arrays is shown in Figure 2, at dif-
ferent solid area fractions (≡ φ) of the array. The results
for n = 1 (the Newtonian case) agree very well (within
2%) with Sangani & Acrivos’ [7] results and show the
expected trend of a strong increase of Cd with φ.

The results are shown together with a lubrication theory
for concentrated arrays. At high solid area fraction the
pressure drop over the unit cell is mainly due to the fact
that the fluid has to be forced through the narrow gap
between the cylinders. Following the usual procedure the
pressure drop can be calculated from which the following
expression for the drag coefficient is obtained:

Cd = 2
3
2 π

1
2

(
1 + 2n

n

)n

×

Γ(2n + 1
2
)

Γ(2n + 1)

(
1−

(
φ

φmax

)1/2
)−2n−1/2 (4)

for cases in which |φ − φmax| � 1, where φmax = π/4
is the maximum possible solid area fraction. The result
for hexagonal arrays is essentially the same as (4), but

with an additional factor of 3n/2+1/2/2n on the right-

hand side and with φmax = π/(2
√

3). The agreement of
the simulation results with (4) is seen to be excellent at
high φ.

Also seen from Figure 2 is the very strong dependence of
Cd on n. The variation of the drag coefficient with n de-
pends of course on the way in which the drag coefficient
is defined in the first place. We use (3) here because it
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e 3: Numerical simulation results for the ratio L/a
ed by (5) for a cylinder in a square array as a func-
of power-law index n at different area fractions.
ols as in Figure 2. The lines correspond to the
ation theory (4).

ides for n = 1 with the definition used in the litera-
for Newtonian fluids and is an obvious extension of
owever, scaling the shear rate with the velocity aver-
over the unit cell and the cylinder radius introduces
endence of Cd on n because the actual shear rate
, see (2)) in the gap between the cylinders scales
the ratio of a velocity scale UL ≡ Uc/L (with c half
eight of the unit cell) and a length scale L, which
robably not too different from the averaged velocity
e gaps between the cylinders and half the gap size.

these instead to scale the ‘viscosity’, a different
coefficient can be introduced (as in (3)) which, in
al, will depend on n as well as on φ. Defining L so
this new drag coefficient does not depend on n, and
ing both scaling relations of the drag force, the drag
cient defined by (3) is found to have the following
dence on n:

d(φ, n) ≡ Cd(φ, 1)

(
φmax

φ

)(n−1)/2(
L

a

)2−2n

. (5)

value of L/a thus equals the ratio

, n)/Cd(φ, 1))1/(2−2n). In Figure 3 the nu-
al simulation results for L/a have been plotted.
above argument is all there is to the dependence

e drag coefficient seen in Figure 2 on n, then L/a
d be a function of φ only. We see that this is
d the case. After averaging L/a for each φ over the
range of n equation (5) has been used to plot the

s for Cd in Figure 2 (the dashed lines). We also
om Figure 2 that Tanner’s [11] results for the drag
cient of a single cylinder follow a similar scaling.
ound that those results can be approximated by
L/a ≈ 19.

esults for the drag coefficient of cylinders in a hexag-
arrangement showed the same trends. The same is
rue for the case of flow along the cylinders. The re-
g values of the ratio L/a for all these cases turned
o be virtually independent of n. Values of L/a av-
d over n are shown as functions of φ in Figure 4.

xis flows

reeping flows of Newtonian fluids through square
exagonal arrays the drag coefficient is independent
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Figure 4: L obtained from averaging the numerical simu-
lation data at each area fraction over all n, as a function
of area fraction φ. (2), on-axis transverse flow, square ar-
rays; (∆), on-axis transverse flow, hexagonal arrays; (©),
longitudinal flow, square arrays; (�), longitudinal flow,
hexagonal arrays; (+), on-axis transverse flow, square
arrays (inferred from Bruschke and Advani [1]). Lg is
the minimum size of the gap between the cylinders.

of direction of the main flow. For general power-law fluids
the equations of motion are not linear and no isotropy
of the drag coefficient is expected and the cell-averaged
velocity is not necessarily aligned with the drag force.

Cd for off-axis flows through square arrays is shown in
Figure 5 for n = 0.7. The drag is seen to increase if
the flow is less aligned with the axes of the array, simply
approaching the lubrication theory when φ is increased.
This increased drag magnitude is accompanied by a ten-
dency for the cell-averaged velocity to be more aligned
with the nearest axis of the array than the drag force.
Again, the results are seen to be in agreement with a lu-
brication theory (the full lubrication theory is presented
in Spelt et al. [9]). These trends are caused by the non-
linear dependence of the pressure drop on the fluid ve-
locity: for gaps over which the pressure drop is smaller,
the resulting flow is smaller by a greater factor.

Inertial effects

Writing the equations of motion of power-law fluids in
dimensionless form yields the Reynolds number Rea ≡
ρanU2−n/K, with a the radius of the cylinders. It can
be shown that the correction to the drag coefficient due
to small-but-finite inertial effects can be written in the
form (Spelt et al. [10])

Cd(φ, n, Rea) = k0(φ, n) + k2(φ, n)Re2
a + ..., (Rea � 1),

(6)
which is a generalisation of the result for Newtonian fluids
(n = 1) derived by Koch and Ladd [5].

Numerical simulations were carried out at different pres-
sure drops, resulting in different Reynolds numbers, and
a regression analysis was applied to find the proportion-
ality constant k2 for each φ and n. The results are shown
in Figure 7. A strong dependence on the power-law index
n is observed. However, as with the creeping flow results,
part of this is due to using the cylinder radius a in the
scaling of the drag force. The other part turns out to be
due to using a in the definition of the Reynolds number.

We therefore introduce first a drag coefficient C̃d based
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e 5: The ratio of the drag coefficient for off-axis
verse flow with n = 0.7 through square arrays di-
by the on-axis drag coefficient as a function of the
nt of the angle θF the applied pressure drop makes
the nearest axis of the array at different area frac-
: (2), φ = 0.1; (∆), φ = 0.3; (©), φ = 0.5. The line
result from lubrication theory.

and UL, as above. An expansion similar to (6)

for C̃d. Further, we replace the Reynolds number in

xpansion by R̃e, which is based on a viscosity scale
K(UH/H)n−1, where H(φ, n) is a length scale and
Uc/H a velocity scale. We shall denote the new

rtionality constant in the revised (6) by k̂2(φ, n)

hall now define H(φ, n) such that k̂2(φ, n) does not
d on n. We can obtain H(φ, n) from the simulation
s through

, n)
=

(
k2(φ, n)

k2(φ, 1)

)1/(4n−4) (
φmax

φ

)1/8(
L(φ)

a

)1/2

.

(7)
results are shown in Figure 8. We see that H only
ly depends on the power-law index and that H is
r than L for concentrated arrays.

lusions

erical simulation results have been presented for the
of power-law fluids through arrays of cylinders, in

of the drag coefficient of a cylinder in the array.
flow in the plane perpendicular to the alignment
r of the cylinders and flow along the cylinders have
simulated. Creeping flow and flows with finite in-
were studied. It has been shown that despite the
g non-linearity of the equations of motion, the re-
for the drag coefficient can be explained with simple
g arguments.

e work will focus on the simulation of a fluid inter-
assing through the array. We shall adopt the level-
ethod to track the front position. Also, we have
d out simulations of power-law fluid flow through
s of ellipsoidal cylinders [13].
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