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Constrained minimisation of the pressure integral in quasi one-
dimensional nozzles is studied for supersonic inlet and sub-
sonic exit conditions via active set methods with polynomial
shape functions. Optimal configurations are generated and dis-
cussed in terms of geometry, shock location, constraints, bound-
ary conditions and nonuniqueness.u v�p.qswex\y4t p,z w\v
Shape optimisation in a flow context refers to choosing geomet-
rical configurations in order to achieve optimal performance,
as measured by a certain cost quantity. The essential elements
of the process are a flow solver to compute flow solutions for
given geometric parameters, and an optimiser to search for local
minima of the cost function. For quasi one-dimensional nozzle
flows, in which area ratio is the relevant geometrical quantity,
optimisation was considered by Frank and Shubin[4], who per-
formed velocity inversion with B-spline shape functions. This
study will focus on the pressure integral along the nozzle, a
quantity of theoretical numerical interest that serves as a use-
ful computational model for lift and drag calculation. Pierce
and Giles[9] consider this cost function from a numerical ac-
curacy standpoint, demonstrating measures by which the accu-
racy is improved over that attained by the basic flow solver. The
present study performs constrained minimisation and examines
a number of associated numerical issues deemed to be impor-
tant for later higher dimensional calculations.

First and second order accurate flow solutions are computed for
low order polynomial shape functions via the Osher scheme[5]
while a discrete adjoint gradient formulation with Gauss-
Newton and DFP Hessian[3] updates enables quasi-Newton it-
eration on the cost function. The need for constraints quickly
becomes apparent and these are imposed on the exit area, in-
let slope and volume, with inequalities handled by an active
set method. Iteration histories are monitored to observe the
interplay between flow solver, optimiser, geometry and shock
location, along with the key role played by constraints of vari-
ous kinds. Studies of optimal shape behaviour with respect to
boundary velocities see the emergence of multiple solutions.{\| w�}�~
w4�A��q�v4z v����e�\y�r"p,z w\v�oGr4v4x��ew\| y�p,z w\v
The system of conservation equations governing steady quasi
one-dimensional compressible flow in a variable area duct[4]
can be reduced to the nonlinear ODE

d
dx

�
u � 1

u � � A �
A

�
γ � 1
γ � 1

u � 1
u �>� 0 (1)

where u � x � is the dimensionless velocity (Mach number here),
A � x � is the area ratio with A � 0 � � 1, x is the normalised axial
coordinate, x ��� 0 � 1 � , and γ is the ratio of specific heats. In
smooth flow regions (1) can be integrated to give

uA � 1 � θu2 � φ � constant � (2)

where θ � γ � 1
γ � 1 and φ � 1

γ � 1 , with solution branches in the � u � A �
plane turning at sonic conditions, u � 1. As A increases super-
sonic flow accelerates and subsonic flow decelerates. When a
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occurs (2) is applied in the smooth adjoining regions with

ankine-Hugoniot jump conditions to yield three nonlinear
ions for the left velocity ul , shock area ratio As and right
ity ur. For supersonic inlet conditions u0 � 1, subsonic
onditions u1 � 1 and diverging geometry A �)� x � � 0 with
rea ratio A1, unique single shock solutions obey

u0 � 1 � θu2
0 � φ � ulAs � 1 � θu2

l � φ
(3)

ul � 1
ul � ur � 1

ur

urAs � 1 � θu2
r � φ � u1A1 � 1 � θu2

1 � φ �
existence requirements on u0, u1 and A1 are met[7]. Phys-
, these correspond to a region bounded by two limiting
ons, namely an inlet shock As � 1 preceding entirely sub-
flow, and an exit shock As � A1 preceded by entirely su-
nic flow[4].�Ap,z o,r"p,z w\vcr4v4xU�$yX����qz t'r4|Y�ew\| y�p,z w\v

erical solution for the two point boundary value prob-
1) with prescribed inlet and exit conditions is computed
niform spatial grid comprising N cells of width h � 1

N ,
iscrete midcell velocity u j defined at x j � � j � 1

2 � h. In-
ing (1) over cell j and applying a midpoint rule for the
e term gives

j � 1 � 2 � f j � 1 � 2 � hg � u j ;A j � A � j � � 0 � j � 1 �� � � �� N (4)

the numerical flux function f j � 1 � 2 is derived from the
scheme with MUSCL extrapolation[5], producing a non-
system of algebraic equations for the vector of midcell

ities u
f � u � α ��� α � � 0 � (5)

α parametrises the geometry. Solutions are found with
on iteration assisted by embedding[8] and Broyden Jaco-
pdates[1].v4z �\y���v��"o,o�¡K��¢�r��"z w\yXq
ar diverging geometry A � x � � 1 � cx, with supersonic inlet

ubsonic exit conditions admits unique solutions provided
cessary existence requirements are met[7]. If the area gra-
A �)� x � is now allowed to vary by including a quadratic term,� 1 � cx � bx � x � 1 � , thus generating converging and di-
g portions, then multiple solutions can appear. The fa-
experimentally observed solution for this configuration

rises a shock in the diverging portion, with supersonic de-
ting flow to the throat, acceleration to the shock and fi-
bsonic deceleration to the exit. Embid et al[2] demon-

d the existence of a second unstable solution with shock
converging section, in which the flow undergoes super-
deceleration to the shock and subsonic acceleration to
roat before decelerating to the exit. Pseudo-arclength
uation[6] of the numerical solution (5) in the parameter
fixed exit area ratio A � 1 � � 1   5 and boundary velocities
1 � � � 2   0 � 0   25 � produces the branching diagram in Fig-

confirming Embid’s solution and revealing another un-



stable solution with two shock waves, one in the converging
section and one in the diverging section.

Solving (3) for these conditions gives the shock area ratio As �0   795, and inversion of the area ratio function gives two possi-
ble shock locations coinciding with stable and unstable single
shock solutions for b � 1   669. Traversing the branch clock-
wise from point A sees shocks in the diverging section move
upstream to the throat, at which the branch turns as the shock
enters the converging section and loses stability. From here the
postshock subsonic acceleration intensifies as b is increased,
eventually becoming sonic and giving birth to a second shock in
the diverging section. Solving (3) augmented with an equation
enforcing sonic throat conditions gives the throat area ratio A

�
at this transiton point, from which the corresponding b � 2   59.
Both shocks then move downstream, governed by two sets of
equations similar to (3), with the left shock weakening and col-
lapsing to a sonic point at the turn. In this limiting solution
the left shock area ratio equals the throat area to give b � 4   12.
According to Embid it is possible to choose a geometry yield-
ing arbitrarily many multiple solutions, of which the solutions
demonstrated here represent a mere sample of the possibilities
obtainable from higher order polynomial shapes.
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Figure 1: Branching of the numerical solution (5) for quadratic
geometry at fixed exit area. Velocity profiles illustrate stable
and unstable solutions with 1 or 2 shocks at A, B, C and D.��¢�r��X������p,z ��z o,r"p,z w\v�n��	�Gy�r�o.z 
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The cost function under consideration here is the pressure inte-
gral along the nozzle, defined in terms of velocity by 1

0
p � α � dx � u0

 1

0 � 1 � γ � 1
2γ

� u2
0 � u2 ��� dx

uA
� (6)

which is approximated by the midpoint rule

c � α � u � α ��� � hu0

N

∑
j � 1

1 � γ � 1
2γ � u2

0 � u j � α � 2 �
u j � α � A j � α � � (7)

with accuracy depending on the flow solver. For a single shock
solution (6) can be accurately evaluated by locating the shock
from (3) and applying Romberg integration in the smooth re-
gions upstream and downstream, � 1

0 pdx � � xs
0 pdx ��� 1

xs
pdx  

Error estimates calculated on a series of spatial grids confirm
first order accuracy from the first order flow solver and while the
second order scheme offers considerable improvement, clean
linear log error profiles are not achieved, with fitted exponents
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g from 1.7 to 2.7. Pierce and Giles utilise adjoint ac-
y enhancement to achieve third order accuracy from the
d order scheme[9], but do not perform optimisation. The
unction (7) will be minimised by quasi-Newton methods,

construct local quadratic approximations to c � α � from
nt and Hessian information. From the current iterate α � j �
iterate α � j � 1 � is sought by line searching along the direc-

ector p � j � , which satisfies the linear system of equations

H � α � j � � p � j � � � ∇c � α � j � �� 
�Ap�� m:x���wXz v�p�{�w4q�� yX| r"p,z w\v
ost function gradient for (7) is defined by

∇c � α � u � α ��� � �
∂A
∂α � T ∂c

∂A
� �

∂u
∂α � T ∂c

∂u
� (8)

the terms ∂A
∂α , ∂c

∂A and ∂c
∂u can be analytically evaluated.

ow derivative term ∂u
∂α can be calculated by solving the set

ear systems
∂f
∂u

∂u
∂α

� ∂f
∂α � 0 � (9)

d by applying the implicit function theorem to the nonlin-
w equations (5), however a more efficient approach is to
ate ∂u

∂α from (8) and (9) to give

∇c � A � α ��� u � α ��� � �
∂A
∂α � T ∂c

∂A
� �

∂f
∂α � T

µ (10)

the adjoint vector µ satisfies the linear system�
∂f
∂u � T

µ � ∂c
∂u � 0   (11)

uss-Newton type Hessian approximation[3] constructed
first derivative terms,

∂2c

l∂αk � hu0
γ � 1

γ ∑
j

�
2γ

γ � 1
� u2

0 � 1

u3
j A j

∂u j

∂αl

∂u j

∂αk
(12)

���� 2γ
γ � 1 � u2

0

u j
� u j �� 1

A3
j

∂A j

∂αk

∂A j

∂αl

1
2
ju

2
j  γ

γ � 1
� u2

0 � u2
j

2 ! �
∂A j

∂αl

∂u j

∂αk
� ∂A j

∂αk

∂u j

∂αl � �
es a starting value from which subsequent DFP

es[3] are performed

H � 1
i � 1 � H � 1

i � zzT

zT y
� H � 1

i yyT H � 1
i

yT H � 1
i y

�
z � αi � 1 � αi and y � ∇ci � 1 � ∇ci. Area ratio functions
ke the polynomial form� � 1 � α1x � α2x � x � 1 ��� α3x � x � 1 � 2 � α4x2 � x � 1 � 2  
v�o�p.qsr�z v���x$#j�"o�yX| p�o

nstrained quadratic test calculations rapidly tend to pure
ing geometry, with successive iterations producing fur-

growth accompanied by a drop in pressure on both
of the shock, thus decreasing the cost function at the



expense of ever growing geometry. Similar behaviour oc-
curs with cubic and quartic geometry, which produce diverg-
ing/converging/diverging shapes and develop a second shock
from subsonic acceleration to sonic conditions in the converging
section. From these tests it is readily apparent that constraints
must be applied in order to achieve suitable convergence.

��z v��"r�qG�e�\y�r4| z p ���Kw\v�o�p.qsr�z v�p�o
Constraints of this type constitute the system CT α � b � where
the columns of matrix C are the gradient vectors of the linear
constraint functions, or normals of the constraint hyperplanes.
At a local minimum α

�
the absence of feasible descent direc-

tions demands that the gradient vector be expressible as a linear
combination of the constraint normals, leading to the necessary
condition ∇c � α � � � Cλ

� � where λ
�

are the Lagrange multipli-
ers. Generalised elimination methods[3] reduce the problem to
one of unconstrained minimisation by effectively eliminating
one variable for each constraint acting. The key element is a
matrix Z whose columns are orthogonal to the constraint nor-
mals, CT Z � 0, provided by a QR factorisation of C. Given
a current feasible point α � j � an arbitrary feasible point is ex-
pressed in terms of the reduced variables β, α � α � j � � Zβ �
with associated cost function c � β � � c � α � j � � Zβ � , gradient
∇βc � β � � ZT ∇αc � α � and Hessian ∇2

βc � β � � ZT ∇2
αc � α � Z  
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Figure 2: Equality constrained optimal nozzle shapes and ve-
locity profiles for polynomial shape functions. Cost function
values range from 2.62 to 4.21, and decrease as the shock moves
downstream, shrinking the post-shock high pressure region.

To demonstrate the procedure first consider a quadratic noz-
zle with fixed exit area ratio A � 1 � � 1   5, or α1 � 0   5. For
boundary velocities � u0 � u1 � � � 2   0 � 0   25 � and starting guess
α � 0 � � � 0   5 2 � T the converged solution and corresponding ve-
locity profile are shown in Figure 2 for a first order accurate
flow solution on 128 flow cells. Repeating this calculation
for cubic geometry produces divergence, however after also
constraining the inlet slope A � � 0 � � α1 � α2 � α3 at its initial
value of � 1   5 a converged solution appears as shown. Com-
pared to the quadratic case the nozzle throat is further down-
stream along with its shock while the inlet is less steeply in-
clined and the cost function is lower. A quartic calculation
with the same constraints also diverges but after fixing the vol-
ume, � 1

0 Adx, at its initial value gives a converged solution with
shock well upstream of that for the previous two cases and
higher cost function. A second quartic calculation starting from
α � 0 � � � 0   5 3   5 0 0 � T with steeper converging inlet A �)� 0 � � � 3
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maller volume produces a marked change in the optimal
e, pushing the shock further downstream to give the low-
st function of the four cases. Upgrading these solutions
ond order accuracy produces very little change to the final
uration, with slight cost reductions of less than 0   5% in
ase.
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e 3: Behaviour of quadratic equality constrained solution
oundary velocity. The left plots display velocity profiles
ed by zero order continuation, which fail at limiting val-

f u0 and u1, and the right plots indicate flow solution be-
ur near these points.v��cp.¢���¡Kw\yXv4x4r�q����Kw\v4xXz p,z w\v�o
ractical situation the shape must be tuned to accomodate a
of inlet and exit conditions, prompting the obvious ques-
f how the optimal solution depends on boundary condi-
Zero order continuation of the quadratic solution from

e 2 with fixed exit area gives the series of velocity profiles
ure 3, with each case meeting a lower limiting velocity at
continuation failure occurs. Freezing the geometry in the

ty of these points and continuing the numerical flow so-
in u0 and u1 by pseudo-arclength continuation[6] reveals
g points similar to those observed in Figure 1. For the in-
e the lower limit coincides with sonic throat conditions as
t the right hand turning point of Figure 1. Decreasing the
elocity u1 at fixed u0 sees the shock move upstream into
nverging section, as in the the left hand turn of Figure 1,
a second shock is born from post shock subsonic acceler-

becoming sonic. In both cases the unstable solutions incur
r cost functions than their stable counterparts so will not
racted by the minimiser.r4| z p ���Kw\v�o�p.qsr�z v�p�oG�"z rcm:t p,z �A� �e�Ap0�\p.qsr"p��"���
equality constrained minimisation, first order necessary

-Tucker conditions[3] at a local minimum stipulate that
nge multipliers of active constraints must be positive.
a set of inequality constraints, active set methods[3] seek

fil these conditions by considering a sequence of equality
ained problems with associated active and inactive con-
t sets. During the line search for a given EP, in which

α � j � � sp � j � , the first inactive constraint violation defines
imum allowable steplength s

�
. If the computed steplength

too large it is reduced to s
�

and the corresponding con-
t is activated to give a new EP. Once a converged EP so-

is attained the Lagrange multipliers are calculated for
tive constraints via the previous QR decomposition and if
are all positive the necessary conditions are satisfied and



the process stops. Otherwise a feasible descent direction exists
and the constraint with the most negative multiplier is removed
from the active set to give a new EP.
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Figure 4: Inequality constrained minimisation results, with lo-
cal minima in the cost function history showing inactive con-
straint violation and subsequent activation.

Return to the solutions displayed in Figure 2 and replace the
equality constraints on the exit area, inlet slope and volume
with corresponding bounds 1   5 �

A � 1 � � 3, � 3
�

A � � 0 � � � 1
and 0   5 � � 1

0 A dx
�

1. For the quadratic case with exit area
bounds only the equality constrained solution at α1 � 0   5, or
active lower bound, has a negative Lagrange multiplier indicat-
ing feasible descent by increasing α1. The active set is thus
emptied and subsequent unconstrained minimisation soon vio-
lates the upper bound α1 � 2   0, which is activated. Minimi-
sation along this line converges to a local minimum with posi-
tive Lagrange multiplier, terminating the process. For the cubic
case initial equality constrained iteration on α1 � 0   5 violates
the upper inlet slope bound which then enters the active set.
Equality constrained minimisation converges to a local mini-
mum with negative Lagrange multiplier for the exit area lower
bound, which after removal and further iteration sees violation
of the upper exit area bound. Activating this and iterating then
converges to a local minimum with two active constraints and
positive Lagrange multipliers. Starting from the solution with
A �)� 0 � � � 3 in Figure 2, with lower exit area and inlet slope
bounds active, the quartic case initially violates the upper vol-
ume bound. Activating this and iterating then converges to a
local minimum with negative Lagrange multiplier for the exit
area lower bound, which is removed to give final convergence
to a local minimum with two active constraints and the lowest
cost function of all three cases. These results are summarised in
Figure 4, where local minima in the cost function history indi-
cate inactive constraint violation and activation.

One approach for handling nonlinear constraints is to apply
the same methods within iterations on the nonlinear constraint
functions. To demonstrate, reconsider the quadratic nozzle with

additional bounds on the throat area, A
� � 1 � � α1 � α2 � 2

4α2
, chosen

to accomodate the previous solution, 0   2 �
A
� �

0   7. Linearis-
ing and proceeding as before leads to several cycles in which the
linearised upper A

�
bound is violated, activated and then deac-

tivated after linearising at the new iterate, before converging to
become active. Iteration for this new EP then violates the upper
exit area bound, which is activated while the newly linearised
A
�

bound becomes inactive. Final iteration along α1 � 2   0 ar-
rives at the intersection point with both upper bounds active.
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tive set method has been applied in conjunction with
screte adjoint formulation and quasi-Newton iteration to
ise the pressure integral for quasi one-dimensional noz-
ith supersonic inlet and subsonic exit conditions. Opti-

onfigurations generated from polynomial shape functions
r downstream shock locations, and the the extra degrees
edom afforded by higher order polynomials offer the low-
st functions. Second order upgrades of first order accurate
ons show little difference, however this is not expected
the case for higher dimensional calculations. Continua-
tudies in the boundary conditions indicate nonexistence
s, with turning points and unstable solutions emerging as

let or exit velocity is reduced to sufficiently small values.
alculations represent a basis for further study towards su-
nic intakes.w�}3| ��x4�4������v�p�o
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