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Abstract

The correlation, ρuk��δu�l between the streamwise velocity u�x�

and the velocity difference δu�� u�x� r��u�x�� in the stream-
wise direction, is often used to represent the interaction between
the energetic and inertial scales. At infinite Reynolds number,
local isotropy requires the energetic and inertial scales to be sta-
tistically independent. By writing ρuk��δu�l in terms of the sec-
ond and fourth-order velocity structure functions, it is shown
that the correlation can never be zero in the inertial range and
is therefore an inaccurate representation for the energy-inertial
scale interaction. The implication of this result on the sweeping
decorrelation hypothesis is discussed.

Introduction

The assumption of local isotropy (LI), a key ingredient of
the hypotheses in Kolmogorov [13](hereafter K41), essentially
implies that the dissipative scales are statistically indepen-
dent of the energy containing scales. In the limit of infinite

Rλ�� �u2�1�2λ�ν;λ � �u2�1�2
���∂u�∂x�2�1�2� the inertial range

(IR),η� r � Lu, the region separating the energy and dissipa-
tive scales, is often assumed to also be independent from large
scale forcing. Here η�� ν3��ε� where �ε� is the mean energy
dissipation rate] and Lu is a large-scale parameter. The assump-
tion of statistical independence is contentious and various argu-
ments have been proposed in order to adequately describe the
energy–inertial scale (EIS) interaction process. In mean shear,
[4] suggested that LI will never be satisfied, while [22] empha-
sised that for flows containing large-scale anisotropy, there must
be a non-vanishing influence on the small scales – even at infi-
nite Rλ.

While Kolmogorov’s equation [12] may be used to distinguish
between the dissipative and inertial scales in physical space (a
cross-over between the dissipative and inertial scales exists at
approximately r� � 12 [1],where an asterix indicates normalisa-
tion by η), the equation cannot be used to measure the effect of
the large scales on the small scales since it neglects large scale
forcing. The following section will show that the correlation
that is used to represent the EIS interaction is incorrect. This
will be discussed with reference to the sweeping decorrelation
hypothesis (SDH)[18] in the final section.

Energy-Inertial Scale Correlations

To test SDH, Praskovsky et al. [16] [hereafter P93], pro-
posed a correlation function that represents the interaction be-
tween the energy, (� uk�k � 1) and inertial scales [� �δu�l �
�u�x� r��u�x��l , for r within the IR and l � 2]. They proposed
that if uk and �δu�l are statistically independent then SDH is
satisfied, since the small scales are not distorted by the energy
containing large scales. Note that while statistical independence
requires that the correlation be zero, the converse is not neces-
sarily true [19]. In general, the correlation function ρuk��δu�l is
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Author �k� l� pairs � ρuk��δu�l

P93[16] �2�2�;�4�2�;�6�2�
Katul et al. (1997)[9] �1�1�

Katul et al. (1995)[10] �2�2�;�4�4�
Katul et al. (1995)[11] �1�1�;�2�2�

Xu et al. (2001)[21] �1�1�;�2�2�

1: Combinations of ρuk��δu�l used for determining the EIS
ction.

d [P93]

ρuk��δu�l �

��
uk���uk����δu�l ���δu�l���

σuk σ
�δu�l

(1)

σαm � ��αm��αm��2�1�2 is the standard deviation of
or m � 1�σα � �α2�1�2 and for m � 2�σα2 � �α2��Fα�
. Here, Fα � �α4���α2�2 is the flatness factor and ��� de-
ensemble averaging.

for SDH using ρuk��δu�l have been carried out in large
ixing layer and channel flow turbulence [P93], the atmo-
ic surface layer (ASL) [9, 10, 11] and in moderately high
isymmetric jet turbulence [21]. These results all show that

u�l �� 0 for r � 0 with k and l � 4. The various combina-
used are shown in Table 1. All authors concluded that
is not exactly valid. Nevertheless, P93 and [10] suggested
here is a tendency for ρul ��δu�k to approach zero in the IR
ence SDH will be satisfied in the limit of infinite Rλ.

riting ρul ��δu�k in terms of simpler, non mean-subtracted

ations between us�x� and ut�x� r�

BL1���Ls �L1���Lt �
�us�x�ut �x� r��
�u2�s�2�u2�t�2

(2)

on-dimensional structure functions

DL1���Lm � ��u�x� r��u�x��m���u2�m�2
� (3)

ill show that the correlation ρuk��δu�l is incorrect for rep-
ting the EIS interaction and is not an appropriate test for

However, prior to expanding (1), some insight into the
ty of ρuk��δu�l can be established. Clearly not all correla-
in Table 1, using different k and l, can represent the ac-
IS interaction. In addition, Hill & Wilczak [8] have sug-
that ρu�δu is an incorrect representation for the EIS inter-

. They indicated that since δu is defined as the difference
r�� u�x�� then u�x� must contain a non-zero correlation
�δu�. A similar observation was made by Sreenivasan &
vitzky [17]. By expanding (1), we also arrive at the same
usion for the higher-order correlations. Since P93 used
ations of the form ρu2��δu�l with l � 2, we will concen-
n the simpliest, ρu2��δu�2 .



Expansion of ρu2��δu�2

For m � 2, we can write

ρu2��δu�2 �
Fu �BLL�LL�2BLLL�L�DLL

�Fu�1�1�2 �Fδu�1�1�2 DLL

� (4)

using equations (2) and (3). To obtain (4), no assumptions con-
cerning the large or small-scale structure have been made. In
the limit of large r, (4) approaches ��Fu�1���2Fu �2��1�2 ��
1�2 when Fu � 3�, this is in agreement with the data of
[10],[11],[16] and [21]. Approximations to (4) may be car-
ried out using various relations between fourth-order correlation
functions. The simplest and most accurate is that defined by

BL�LLL � BLLL�L� (5)

Assuming a joint-gaussian distribution (JGA) between u�x� and
u�x � r�, Batchelor [2] used a moment generating function to
show that

BLL�LL � 1�2�BL�L�
2� (6)

Similarly, Hill [7] obtained

BLLL�L � FuBL�L (7)

by modifing the JGA generating function. Equation (5) is also
derived using cyclic permutations of (7). Therefore JGA, when
applied to all fourth-order velocity statistics, uses Fu � 3 and the
equations (5),(6) and (7). The limitations of JGA, however are
well known, since it predicts that all odd-order structure func-
tions are zero. Also JGA gives DLLLL � 3D2

LL. Consequently,
it is incompatible with K41 theory for odd-order moments of
�δu�, and with turbulence models (e.g. [6]) that are used to
account for small-scale intermittency. However, as a first ap-
proximation to (4), we note that JGA predicts

ρu2��δu�2 � DLL�4� (8)

Compared with JGA, better approximations to ρu2��δu�2 are ob-
tained using assumptions (5) and (7). With (5)

ρu2��δu�2 �
4Fu�4BLLL�L �DLLLL�6DLL

6�Fu�1�1�2 �Fδu�1�1�2 DLL

� (9)

We now attempt to simplify (9), while retaining DLLLL . Using
(7)

ρu2��δu�2 	 DLLLL �DLL �2Fu�6�

6�Fu�1�1�2 �Fδu�1�1�2 DLL

� (10)

and by noting that DLLLL 
 �2Fu�6�DLL , then

ρu2��δu�2 	 1

6�Fu�1�1�2

�DLLLL�
1�2

�1�1�Fδu�
1�2

� (11)

Here, �1�1�Fδu�
1�2 is a weakly varying function with r, since

it is approximately 1 at r � 0 and decreases to about 4�5
for large r. Consequently, ρu2��δu�2 varies approximately as

�DLLLL�
1�2. This result, along with that obtained with JGA con-

firms that ρu2��δu�2 cannot be zero in the IR.

The effect of the different approximations to ρu2��δu�2 may be
assessed using relatively high Rλ plane-jet data. These data, ob-
tained on the jet centreline, were used in [21] for ρu2��δu�2 and
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e 1: Comparison between different approximations to

u�2 using the plane jet (Rλ � 1170) data.
.(1), — Eq.(11), - - - Eq.(4)/Eq.(1),— - - — Eq.(8)/Eq.(1),

Eq.(9)/Eq.(1), – – Eq.(11)/Eq.(1).

Taylor’s hypothesis is used to convert data from a time in-
nt to a spatial increment r. The value of Rλ�� 1170� is of
r order to that used by [10],[11] and [16]. Figure 1 shows
tio of (4), (8), (9) and (11) relative to (1). Also shown
e exact relation and (11). While there is a relatively large
pancy at small r, the ratios approach 1 within the IR. The
identified by the region over which DLLL � r (not shown).

two simplest approximations, equation (11) is marginally
accurate than (8) within the IR. These results indicate that

u�2 will never be zero, even at infinite Rλ. They also sup-
he conclusions of [8], that ρuk ��δu�l is an inaccurate test for
ical independence between the energy and inertial scales.

nsion of ρu�δu

quent to P93, [9, 10, 11, 21] used ρu�δu as a simpler mea-
f the EIS interaction. These results indicated both a plau-
dependence on Rλ and atmospheric stability and the im-
ions for the EIS interaction were discussed. However,
ow by expanding ρu�δu and using the identity 2�u�δu���
�DLL, that

ρu�δu �
�BL�L�1�

�DLL�1�2
�� �DLL�

1�2

2
(12)

econd expression in (12) is obtained by assuming stream-
homogeneity and approaches a limit of �1�

�
2 for large

arly, no conclusions regarding the EIS interaction can be
from this correlation.

cation to the Sweeping Decorrelation Hypothesis

weeping decorrelation hypothesis (SDH) proposed by
kes [18], assumes that the small scale eddies are advected
fixed point by energy containing eddies without dynamic

tion. The basic tenet of SDH implies that the inertial range
are uncorrelated with the energy containing scales (Chen

aichnan[3]). Tests for SDH have been carried out using
al methods [3, 15, 20]. P93 suggested that a more rigor-
st may be provided by higher-order structure functions.
er to test SDH using ρuk��δu�l , we expand the higher-order
ure functions proposed by P93 and apply K41 scaling, and
ts refinement [14](K62), to moments of �δu� which appear
expansion.

r-order Velocity Structure Functions

rm ‘Higher-order velocity structure functions’, to be used
in the context of SDH, was initially proposed P93. It is



based on a definition provided by [20] for higher-order spectra.
The higher-order structure functions represent the normalised,
second-order moment of the velocity increment �δum�, for inte-
ger m � 1, viz.

D�m�
LL �r� � ��um�x� r��um�x��2���u2�m� (13)

these structure functions were not considered in K41. After
writing in terms of �δu�, and expanding and collecting like
terms, then for m � 2, (the general expansion for m� 2 is given
in P93)

D�2�
LL � 4

�
�u2�δu�2�
�u2�2

�
�u�δu�3�
�u2�2

�
DLLLL

4

�
� (14)

Equivalently, expanding (13)[for m � 2] and assuming stream-
wise homogeneity,

D�2�
LL � 2

�
Fu�BLL�LL

�
� (15)

P93 proposed that, in order to satisfy SDH in the IR, D�m�
LL �

r2�3, where � denotes “scales as”. This condition is related to
the original observation of Dutton and Deaven[5] and the subse-
quent confirmation by Van Atta & Wyngaard[20] that scaling of
the higher-order spectra is not based on the dimensional analy-

sis implicit in K41 (this would predict that D�m�
LL � rm�3). When

the condition required by K41 is relaxed to one of D�m�
LL �DLL ,

then in order to satisfy SDH, two consequences are implied
from (14).
i) Only the first term is non-zero and u2 and �δu�2 must be un-
correlated with each other, or
ii) The sum of all terms scale as DLL.
We will first discuss i), as proposed by P93 and subsequently
show, at least when the approximations to ρu2��δu�2 are used,

that D�m�
LL �DLL.

Expansion of D�2�
LL

In (14), the first two terms are expanded using equation (1) viz.

D�2�
LL � 4DLL

�
1��Fu�1�1�2�Fδu�1�1�2ρu2��δu�2 � (16)

σu σ�δu�3

�u2���δu�2�ρu��δu�3 �
DLLLL

4DLL

�
�

If the test for SDH is initially applied according to P93, (where
ρu2��δu�2 and ρu��δu�3 � 0 in the IR), then

D�2�
LL � 4DLL�1�DLLLL�4DLL��

To satisfy SDH, D�2�
LL �DLL, this requires either

DLLLL �DLL (17)

or

DLLLL

4DLL
� 1� (18)

While it is well established that (17) will never be satisfied,
equation (18) is valid in the limit of infinite Rλ. We demonstrate
this by writing (18) using K62 and assuming that Lu�λ � Rλ
[19], viz.

DLLLL

4DLL
�
	

r
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µ�2� and µ�4� equal the departure the scaling exponent of
d and 4th-order structure functions from their respective
redicted values. For Rλ � 500, �µ�4�� µ�2�� 	 0�1 and
�DLL � R�0�56

λ . This ratio will approach zero at suffi-

y large Rλ, leading to D�2�
LL �DLL. We note that this result

y correct when all ρuk ��δu�l are zero, i.e. the DLL depen-

of D�2�
LL is a forced condition.

ossible to carry out a similar analysis without assuming
ither ρu2��δu�2 or ρu��δu�3 are zero. Assuming equation (6)

2�u�δu�3����u2�2DLLLL� (20)

14) becomes

D�2�
LL � 4

�u2�δu�2�
�u2�2

�DLLLL �

ng D�2�
LL in terms of correlations gives,

D�2�
LL �4DLL �4

σu2 σ�δu�2

�u2�2 ρu2��δu�2 �DLLLL � (21)

ituting (10) into (21), an approximation to D�2�
LL is

D�2�
LL �

4FuDLL�DLLLL

3
� (22)

d, when (11) is used,

D�2�
LL �

12DLL�DLLLL

3
� (23)

elation is identical to that obtained by [8]. When JGA is
on (15) and (23)

D�2�
LL � 4DLL� �DLL�

2 � 2DLL�1�BL�L�� (24)

arison between the various approximations to D�2�
LL are

in Figure 2. In contrast with individual approximations
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e 2: Comparison between approximations to D�2�
LL using

jet data. Also shown is DLL, and the local slopes to D�2�
LL

LL, represented by ζ�2�
LL and ζLL respectively.

Eq.(14); —,DLL; - - -, Eq.(22)/Eq.(14); – –
(23)/Eq.(14); — - —, Eq.(24)/Eq.(14) ; a long dash
qual to 1 is shown for reference.

��δu�2 , the approximation to D�2�
LL using JGA is marginally

within the IR than that for either (22) or (23). Also, it is
ssible to determine if SDH is exactly satisfied when using



(22),(23) or (24), since D�2�
LL cannot be written entirely in terms

of DLL.

Comparing ζLL and ζ�2�
LL –the scaling exponents for the mea-

sured values of DLL and D�2�
LL respectively–provides the most

accurate test for establishing whether SDH is satisfied. Using
the local slope estimate of the scaling exponent, e.g. ζLL �

d�lnDLL��d�lnr��, the dependence of D�2�
LL relative to DLL can be

determined. Figure 2 shows that D�2�
LL does not have the same

scaling exponent �	 0�69� as that obtained for DLL�	 0�75�. In

addition, the width of the approximate scaling range for D�2�
LL is

neglible compared with that for DLL. Both of these differences
suggest that SDH is not satisfied in this flow. Therefore, only

by comparing the local slopes of D�2�
LL and DLL is it possible to

establish whether SDH is satisfied.

Conclusions

The relations proposed by P93, have been used to determine
the EIS interaction and test SDH, this requires that the energy
and inertial scales be statistically independent. This has previ-
ously been quantified through the correlation ρuk ��δu�l , for vari-
ous values of k and l. By expanding the higher-order streamwise

structure function D�2�
LL (containing two correlation terms), it is

shown that neither of the correlations are zero. Consequently,
while ρuk��δu�l represents the correlation between u and δu, it is
not a precise measure of the statistical dependence between the
energy and inertial scales. This result is in agreement with the
conclusion of [8], which was arrived at by a different approach.
We also conclude that, since these correlations will never equal
zero, it is not possible to establish if SDH is satisfied when writ-

ing D�2�
LL in terms of the correlations. It is suggested that the

local slope be used to determine the scaling behaviour of D�2�
LL .
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