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Abstract 
We revisit the data from Project Prairie Grass to explore some 
fundamental aspects of vertical dispersion in the atmospheric 
surface layer using modern stochastic theories of turbulent disp-
ersion. In particular, we examine the relationship between the 
diffusion equation (K-theory) and first-order Lagrangian stoch-
astic models (Langevin models) over a range of stabilities. We 
also attempt to resolve some conflicting earlier studies that imply 
significantly different values for the von Karman constant for the 
transfer of matter, or equivalently of the turbulent Schmidt 
number. Finally, we assess the importance of surface deposition 
in the Project Prairie Grass data. 
 
Introduction 
Project Prairie Grass is the name given to a dispersion exper-
iment carried out in the atmospheric boundary layer near 
O’Neill, Nebraska in the summer of 1956. During the experiment 
nearly 70 releases of SO2, each of 10 minutes duration, were 
sampled at a height of 1.5 m on arcs up to 800 m downwind of 
the source. In addition, vertical profiles were measured 100 m 
downwind of the source. The dispersion experiments were 
supported by micro-meteorological data including wind, 
temperature and humidity profiles. Project Prairie Grass remains 
one of the most comprehensive atmospheric dispersion 
experiments ever conducted. 
 
The Project Prairie Grass (PPG) data set [1] has been widely 
used to test and assess theories of vertical turbulent dispersion in 
the atmospheric surface layer. Our interest here is in Lagrangian 
stochastic modelling, so we review briefly work with this focus, 
including that based on solution of the diffusion equation. Our 
main concern is to resolve some apparent conflicts, especially 
regarding the magnitude of the effective vertical diffusivity, and 
the implications this has for the value of the more fundamental 
Lagrangian structure function constant C0 which is central to 
modern Lagrangian stochastic modelling. All the studies of 
interest here, and the present work, deal with the crosswind 
integrated concentration from a point source. 
 
Previous Work 
Nieuwstadt and van Ulden [11] solved the 1-D diffusion equ-
ation with vertical diffusivity K equal either to the vertical diffus-
ivity for heat KH or to 1.35KM, where KM is the diffusivity for 
momentum. They used Kansas forms [2] for the wind profile and 
for the diffusivities and compared theoretical and experimental 
estimates for the centre-of-mass z  of 22 vertical profiles of the 
concentration at a distance 100 m downwind of the source.  
 
In stable, neutral and moderately unstable conditions they 
concluded that predictions using both forms of the diffusivity 
agree well with the observed values of z . Under strongly 
unstable conditions, there is a large difference between the two 
alternative diffusivities and the data lie between the two. They 
questioned the use of the diffusion equation under these 
conditions.  
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ing et al. [6] extended Nieuwstadt and van Ulden’s results 
clude comparisons with the shape factor s and with the 
entration at a height of 1.5 m. They also explored the 
ence of dry deposition, concluding that it improved compar-
 with the data. 

ous authors have compared the predictions of 1-D and 2-D 
evin equations with the PPG data [14]. For near-neutral 
itions Wilson et al. [18] and Davis [3] found that good 
ement with the data is obtained using a von Karman constant 
 0.4 and with an enhanced von Karman constant for matter 
 ≈ 0.63, which according to Davis “allows for a little loss of 
at the surface through dry deposition”. Reid [13] found a 

lar result in comparisons with data from Porton experiments. 
he other hand, Ley [8] obtained a good fit to a profile based 
presentative values of z  and s derived by Nieuwstadt and 

Ulden using κM = κmass = 0.41.  

er diabatic conditions, Wilson et al. [18] used κmass ≈ 0.63 
effectively tuned the stability corrections to the diffusivity, 
ining good agreement with the observations for individual 
. Ley and Thomson [9] averaged measured profiles with 
lar values of Obukhov length L and, using κmass = 0.41 and 
ard stability corrections, obtained good agreement with 
 profiles except close to the ground where the size of their 

 step caused an under-estimation of the concentration.  

e recently, Venkatram and Du [17] and Du and Venkatram 
sed 1-D and 2-D Langevin models respectively in comp-
ns with the crosswind integrated concentration at a height of 
m. Their approach differs from the earlier work described 
e, but corresponds roughly to κmass ≈ 0.65 for the 1-D model 
κmass ≈ 0.92 for the 2-D model. 

an summarise the issues and apparent conflicts arising from 
 studies as follows: 
How good an approximation is the diffusion equation? 
Some studies using the diffusion equation, with or without 
deposition, show good agreement with the data. 
What is the value for κmass? Different Langevin model 
studies have claimed good agreement with the PPG data 
using significantly different values. 
What is the role of deposition? Some studies claim it 
improves agreement with the observations, while others 
suggest it is not important or ignore it. 

ory 
wstadt and van Ulden [11] and Gryning et al. [6] solved the 
diffusion equation. Here we have reproduced their results 
 a stochastic differential equation version of the 1-D 
sion equation. Our model equations are 
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where u is the streamwise velocity, x and z are the streamwise 
and vertical displacements along a fluid trajectory and 

Hmass zuK ϕκ /*=  (2) 

is the diffusivity We use the Kansas forms [2] for the dimen-
sionless temperature gradient φH and the mean wind speed U, 
with a von Karman constant κM = 0.35. Note though, we allow 
the von Karman constant for matter to vary from this value. 
 
We also use a 2-D Langevin equation that can be represented by 
stochastic differential equations of the form [4] 
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where w is the vertical velocity. The vertical velocity standard 
deviation is parameterised by 
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and the streamwise velocity fluctuations are given by 

*5.2 uu =σ . (5) 

Here, u* is the friction velocity and L is the Monin-Obukhov 
length. In (3) C0 is formally equal to the constant in the inertial 
subrange of the Lagrangian velocity structure function, ε is the 
rate of dissipation of turbulence kinetic energy and λαβ is a 
component of the inverse Reynolds stress tensor. In both (1) and 
(3) dξ is the incremental Wiener process [5]. 
 
We determine the product C0ε by matching the vertical 
component of the diffusion limit of the Langevin equation to (1) 
with the diffusivity given by (2). Thus we have  
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4
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This is equivalent to prescribing a Lagrangian time scale by 
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The stochastic differential equations are solved numerically by 
generating trajectories with initial conditions z = zs, x = 0 and, 
for (3), initial random velocities drawn from a 2-D Gaussian 
distribution with mean U, variances σ  and σ  and covariance 2

u
2
w

2
*uwu −=′ . We use a time step which resolves the local time 

scales of the turbulence; viz. ∆t = 0.1 min(z/u*, L/u*) for (1) and 
∆t = 0.1 min(TL, L/u*) for (3) and calculate concentration stat-
istics over N = 105 realisations. We treat the source as a steady 
continuous point source at a height zs = 0.46 m, and calculate the 
vertical profile of the crosswind integrated mean concentration at 
a distance 100 m downstream of the source from  

wher
x = 1
the s
[9]. S
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e the sum is over the n(z) particles which cross the plane 
00 m in a height range ∆z centred on the height z, and ui is 
treamwise velocity of the i-th particle at the time of crossing 
imilarly, we calculate the streamwise flux of SO2 from 
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use analogous expressions to calculate the components of the 

due to the mean flow and the turbulence, UC  and y y
c′′u .  

e absence of deposition to the surface, a zero flux boundary 
ition is implemented at the roughness height z0 by reflecting 
ajectories there. If there is deposition to the surface, a non-
 downward flux F0 = wdCy at z0 is prescribed in terms of a 
sition velocity wd, and is implemented [19] by reflecting 
cles with probability 
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sion vs Langevin Models 
g the diffusion equation (1) and the Langevin equation (3), 
have calculated vertical profiles of concentration for 

nwind distances from 50 to 800 m and for strongly stable, 
-neutral and strongly unstable conditions.  
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e 1. Comparison of crosswind integrated concentration profiles for 
iffusion equation and the 2-D Langevin equation for unstable 

itions (L = -5) at (from the right) distances of 50, 100, 200, 400 and 
 from the source. The height scale zref takes the values 4, 9, 24, 65 

90 m at these distances. 

re 1 shows vertical profiles for the crosswind integrated 
entration at different distances downstream for unstable 
itions (L = -5 m). Concentration is plotted on a log axis, 
e the height is scaled with a reference height that is roughly 
l to z  for the 2-D Langevin profiles. Actual values of zref 
iven in the figure caption.  

diffusion solution is about 25% low at a height of z/zref ≈ 0.5. 
near neutral conditions (not shown) the difference is about 
, while under stable conditions (not shown) (L = 5 m) the 
rence is negligible. The under-prediction occurs at all 
nces and so is not a near-source effect due to the finite 



source height, but rather is a systematic failure of the diffusion 
approximation as the turbulence becomes increasingly 
inhomogeneous under increasingly unstable conditions.  
Well away from the surface, the concentration from the diffusion 
equation is larger than that from the Langevin equation and the 
difference increases with height. This also occurs under near-
neutral conditions and is consistent with the findings of Mooney 
and Wilson [10]. 
 
Data Analysis 
Meteorology 
A full suite of micrometeorological profiles was measured 
concurrently with each of the tracer releases during PPG. We 
have estimated the turbulence scales u* and L and the 
temperature fluctuation scale θ* by fitting the Kansas forms [2] 
for the wind and temperature profiles to the measured profiles in 
a self-consistent way. This method works best when the 
roughness length is known.  
 
Although Pasquill [12] makes an unattributed reference to 
roughness values ranging between 0.006 and 0.01 m, there seem 
to be no references to direct estimates of z0 for the PPG data. We 
have taken 16 near-neutral runs and fitted the wind profiles for 
these to determine u*, L and z0, finding that z0 indeed ranges 
roughly between 0.006 and 0.01 m, with a mean value of 
0.0074 m. Accordingly, here we have used the value z0 = 008 m. 
 
Except for a few cases at the extremes of stability, our values for 
u* and L agree well with those of Nieuwstadt reported by van 
Ulden [16]. 
 
Concentration Profiles 
The PPG concentration data consist of crosswind measurements 
at a height of 1.5 m at distances of 50, 100, 200, 400 and 800 m 
downstream and vertical profiles at heights from 0.5 – 17.5 m on 
six masts located 100 m downstream of the source. Most authors 
report the crosswind integrated concentration . Separate 
tabulations of , where Q is the source strength, by Horst 
et al. [7] and van Ulden [16] at 1.5 m are in excellent agreement 
and appear to have been corrected for evaporation losses as 
reported by Barad [1]. Here we use the more complete 
tabulations of Horst et al. 

),( zxC y

QC y /

 
We have summed or averaged vertical profiles over all masts 
registering non-zero concentration and converted them to cross-
wind integrated concentrations by normalizing to the profile 
value at a height of 1.5 m and then multiplying by the crosswind 
integrated concentration at 1.5 m. After discarding Runs 14 and 
48s, where satisfactory fits to the meteorological or concentration 
profiles were not obtained, we have 45 concentration profiles.  
 
The scaled concentration  is independent of uQuzC y /)( * * [18] 
and is a function only of L for fixed geometry (i.e. fixed zs, z0 and 
x). A plot of all the vertical profiles shows a general ordering 
with 1/L, but with a lot of scatter because the profiles represent 
the average at most 6, and usually only 2 or 3, points across the 
plume. Accordingly, we have averaged scaled profiles within 
different ranges of 1/L. Particularly for the near-neutral runs, this 
yields well-ordered profiles with associated error estimates.  
 
Comparison of Theory and Observations 
Figure 2(a) compares predictions of the 2-D Langevin model 
with PPG data for near-neutral conditions –0.03 ≤ 1/L ≤ 0.03. 
Clearly the model is not diffusive enough, overestimating the 
ground level concentration by about 40% and correspondingly 
underestimating dispersion away from the surface. Figure 2(b) 
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s that good agreement with the data can be obtained by 
cing the Schmidt number Sc = κmass/κM from 0.74 to 0.52 or 
valently, increasing κmass from 0.47 to 0.67; i.e. by increasing 
diffusivity by about 40%. Since the diffusion solution 
nds only on the product κMκmass, for κM = 0.41 the same 
ion is obtained with κmass = 0.57. This confirms the findings 
ilson et al. [18] and Davis [3], but is contrary to the work of 
[8] and Ley and Thomson [9] who obtained good agreement 
 the data using the values κM = κmass = 0.41. 
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e 2. Comparison of PPG crosswind integrated concentration profiles 
predictions of the 2-D Langevin equation for (a) K = KH and with no 
sition; (b) K = 1.42KH and with no deposition; (c) K = KH and with 
sition. The data points represent the average of a number of runs and 
rror bars represent ± one standard error on this average. 



 

Figure 2(c) shows the effect of deposition on the concentration 
profiles using a deposition velocity of wd = 0.05u* and with 
u* = 0.43 m-1. Although there is some basis for a deposition 
velocity of this magnitude, it is quite uncertain and u* itself 
varies from 0.2 to 0.5 ms-1 over the range of stability shown in 
Figure 2. Nevertheless, it is clear that including deposition of this 
magnitude gives almost as good agreement with the data as does 
increasing the diffusivity.  
 
In order to assess whether the magnitude of the deposition as 
represented in Figure 2(c) is reasonable, we have also calculated 
the streamwise flux of SO2, and its components due to the mean 
flow and the turbulence, at a downstream distance of 100 m. In 
the absence of deposition the total downstream flux (i.e. the 
vertical integral of (9)) is conserved and equals the source flux. 
The flux due to the fluctuating velocity is negative and ranges 
from about 3 to 7% of the total flux. The flux due to the mean 
velocity, which is what is measured, therefore is slightly greater 
than the source flux.  
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Figure 3. Comparison of PPG data for the downstream SO2 flux due to 
the mean flow with predictions of the 2-D Langevin equation for 
K = 1.42KH  with no deposition and for K = KH  with deposition. The 
solid black line represents the average of all the data and the dashed black 
lines represent ± one standard error on this average. 
 
Figure 3 shows the crosswind integrated downstream flux due to 
the mean flow, normalised by the source flux, as a function of 
the Obukhov length. The points represent the flux calculated 
from the PPG concentration and mean wind profiles by 
integrating the product of the Monin-Obukhov function fitted to 
the wind profile as described above and a stretched exponential 
function fitted to the concentration profile. The solid black line 
represents the mean of all the runs, although there is a slight 
tendency for lower values under stable conditions. Most points 
lie within ±15% of the mean, and the dashed black lines 
represent ± one standard error on the mean. The blue dashed line 
is for the calculation with no deposition, and is in remarkable 
agreement with the data. On the other hand, the red dash-dot line 
representing the calculation with deposition, is more than ten 
standard errors lower than the data. Thus it is almost certain that 
deposition is much less than is implied by a deposition velocity 
of wd = 0.05u*. 
 
Conclusions 
Numerical calculations show that the diffusion limit is a good 
approximation to the Langevin solution for the dispersion from a 
point source near the ground under stable conditions, but 
becomes increasingly inaccurate as the stability decreases. 
 
The 2-D Langevin equation gives excellent agreement with data 
from Project Prairie Grass provided the effective diffusivity for 
matter is increased by about 40% compared with that for heat. 
This finding confirms earlier work by Wilson et al. [18] and 
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rs [3, 13]. From (6), the value Sc = 0.52  corresponds to 
 3.6, which is much lower than estimates from direct 
erical simulations [15]. Although similar agreement with 
entration profiles can be obtained by invoking the effects of 
sition to the surface, we have shown that the resultant 
mwise flux is then much lower than is observed. 

increase of 40% in the effective diffusivity of matter has 
ous and important implications for surface exchange proc-
. However, it is difficult to find a mechanism to explain why 

er should be transported more efficiently than heat. These 
ngs clearly need to be tested against other data sets. 
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