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Abstract 
Kinetic theory for particles of the same mass and the same 
granular temperature is well established. However, kinetic theory 
for particles of different mass and different granular temperature 
is yet to be established. In this paper we re-derived the equations 
of the number of collisions and dilute viscosity for a binary 
granular mixture with unequal granular temperature. Here 
particles are taken as of different size and density. The results 
indicate significant discrepancies when compared with the theory 
that is derived by assuming particles of equal mass and equal 
granular temperature. 
 
Introduction  
 

Computational Fluid Dynamics in multiphase flow has become a 
well-accepted and useful tool in modelling the gas/solid flow 
systems during recent years. The earlier models require a 
particular viscosity as an input into the models (Tsuo and 
Gidaspow, 1990; Kuipers et al., 1992; Lyczkowsky et al., 1993). 
However reliable measurements of such viscosities are scarce 
(Schuegel, 1971; Grace, 1982; Miller and Gidaspow, 1992).  
 
Savage (1983) and his collaborators (Savage and Jeffrey, 1981; 
Jenkins and Savage, 1983) showed that dense phase kinetic 
theory can be applied to a granular flow of particles. This theory 
allows the computation of viscosity of particles from 
measurements of granular temperature (Gidaspow and Huilin, 
1996; Gidaspow et al., 1994). Savage used the term granular 
temperature to quantify the random motion of particles about the 
mean velocity. Granular temperature was defined as the averages 
of the sum of the squares of the three fluctuating velocity 
components. In these theories all of the particles are assumed to 
be identical, characterised by a diameter, density and a 
coefficient of restitution. However, in real particle systems, 
particle of different size and density exists. The granular 
temperature might not be equal for particles of different size and 
density. Experimental data by Yang & Arastapoor (1996) have 
shown that particles of different diameters possess unequal 
turbulence energy in a riser of gas-solid dilute flow, indicating 
different granular temperature for particles of different size. 
 
In this paper, the equations of the number of collisions and the 
particulate viscosity for a binary granular mixture with unequal 
granular temperature has been re-derived based on the kinetic 
theory for dense gases (Chapman & Cowling, 1970). The 
velocity distribution function and the definition of granular 
temperature has been taken from Jenkins and Mancini (1987). 
The granular temperature has been defined as the average of the 
three fluctuating energy components. The computed results 
indicate significant changes when compared with the results 
obtained under the assumptions of equal granular temperature. 
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considered two different types of species. Particles of each 
ies are considered as smooth, elastic and homogeneous 

res. Let  and  be the velocities of particles of species i 
ediately before and after a collision, respectively. Again let 

nd  be the velocities of particles of species j immediately 

re and after a collision. It then follows that the relative 
city between the particles is . Using 
ervation of momentum the velocity of the centre of 
bined mass, G, can be defined as; 
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re mo is the combined mass of the particles. 
number of binary collisions per unit time per unit volume 
e written as  
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e  k is the unit vector along the line joining the centres of the 
cles. dij is the average diameter, defined as: 
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 probability of finding a pair of particles of species i 
j in the volume dri drj having velocities  and 

 and  and  can be expressed as: 
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velocity distribution for particles of phase i can be written as  
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e θi is the granular temperature, defined as 

><= 2
3
1

iii Cmθ         (5) 

e, Ci is the fluctuating velocity. 
 assumed that each type of particles in the mixture has a 
rent granular temperature. The pair distribution function was 
ned by assuming chaos.  Following the same procedure as 
wed in dense gas kinetic theory by Chapman & Cowling 
0), the complete pair distribution function can be expressed 
e product of the spatial pair distribution function and the 
e particle velocity distribution functions (Savage and 
ey, 1981) 
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d on the single solid phase model V. Mathiesen 
0) considered the binary radial distribution function 
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Substituting the values of fI,fj , the pair distribution function 
becomes 
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Using the above equations the number of binary collisions per 
unit time per unit volume becomes    
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To evaluate this expression the variables of integration are 
changed from ,  to the variables G,  and expanding it 

in a Taylor series, the integral can be written as 
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where coefficients A, B, D  are  
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Carrying out the integral equation (11) becomes 
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If , and mji θθ = i=mj, then equation (8) boils down to the one 

used for particles of equal granular temperature and equal mass 
as showed by Gidaspow (1994). 
 
Particulate Viscosity 
 
In dilute kinetic theory of gases, the intuitive concept of the mean 
free path plays a very important role. Through the use of this  
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re 1. Computed Number of collisions with granular     
temperature of species j. 
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re 2 Computed Number of collisions with granular       

temperature difference. 

cept, transport coefficients such as viscosity are 
ained that are surprisingly close to those obtained from 
 exact theory (Gidaspow, 1994).  The mean time 
ween successive collisions of phase i, called the 



 

collision time τi, can be obtained as shown below for 
dilute flow where  is one:  og
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and the Mean free path can be expressed as  
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Using the mathematical techniques as shown in Chapman & 
Cowling (1972) and Dimitri Gidaspow (1994) the viscosity of 
phase i can be written as 
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If , and mji θθ = i=mj, equation  (12) reduces to the one used 

by Dimitri Gidaspow (1994) and Chapman & Cowling (1970) for 
particles of equal granular temperature and equal mass. 
 
Results and Discussion 
 
We considered two types of particle with mi = 1.6 E-07 kg, mj = 
2.21 E-07 kg and di = 5.0E-04 m, dj= 1.2E-03 m.  Fig. 1(a) shows 
the collisional number of the multi-particle granular mixture as a 
function of granular temperature of species j, keeping the 
granular temperature of species i constant at 3.0E-11kg-m2/s2. 
Results obtained for  are also presented in the figure. 

Figure 1 clearly indicates that for unequal granular temperature 
the rate of no. of collision per unit volume decreases with the 
increase of granular temperature of species j, in the region 

. The trend is opposite in the region . This is 

expected because in the region , with the increase of 

granular temperature of species j the volume of collisional 
cylinder decreases as relative velocity ( ) decreases, 

leading to lower no. of collisions. Similarly in the region 
, with the increase of granular temperature of species j, 

the volume of collisional cylinder increases as relative velocity 
( ) increases, leading to higher no. of collisions. The 

curve with unequal granular temperature intersects with the curve 
with equal granular temperature at the point . Because 

for , the equation (10) for N
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i

ji θθ >

ji θθ <

iij cc =

iθ =

ji θθ <

ji c−

ji θθ =

iθ−

ji θθ >

ijc c=

jθ

jc−

jθ

θ

jθ −

ij reduces to the one that is 

used for particles with equal granular temperature [Gidaspow 
1994, Chapman & Cowling 1970]. This validates the newly 
derived function for rate of number of collision per unit volume. 
Figure 2 shows the number of collision per unit time per unit 
volume as a function of the difference between the granular 
temperatures ( ). Which clearly indicates that the nature 

of the curve for rate of collision per unit volume depends on the 
nature of . Based on the nature of  (-ve or +ve), 

N

j θ−

iθ

ij may decrease or increase. 
 
Figure 3(a) shows the particulate viscosity as a function of 
granular temperature of species j, keeping the granular 
temperature of species i constant at 3.5E-12 kg-m2/s2. 
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(b) 

re 3 Computed dilute viscosity with granular temperature of 
species j. 
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re 4 Computed dilute viscosity with granular temperature 

difference. 

re 3 clearly indicates that for unequal granular temperature 
articulate viscosity increases with the increase of granular 
erature of species j in the region . The trend is ji θθ >



 

opposite in the region . This is expected because in the 

region , with the increase of granular temperature of 

species j the relative movement of the particles decreases, leading 
to high particulate viscosity. Similarly in the region , 

with the increase of granular temperature of species j the relative 
movement of the particles increases, leading to lower particulate 
viscosity. The curve with unequal granular temperature intersects 
with the curve with equal granular temperature at the point 

 kg-m
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2/s2. This is because for , 

the particulate viscosity equation (16) reduces to the one that is 
used for particles with equal granular temperature [Gidaspow 
1994]. This validates the newly derived function for particulate 
viscosity. Figure 4 shows the particulate viscosity of species i as 
a function of the difference between the granular temperatures. 
Which clearly indicates that the nature of the curve for particulate 
viscosity depends on the nature of . Based on the nature 

of  (-ve or +ve) µ
ij θθ −

i may increase or decrease. 

 
Conclusion 
 
Reliable values of particulate viscosities are needed for numerical 
simulation and design improvements. No handbook values are 
available for such viscosities. The available theories developed to 
obtain such viscosities are applicable for particles of same mass 
and same granular temperature. In this paper, a new method of 
obtaining particulate viscosities for a multi particle system has 
been proposed. The computed results indicate that the number of 
collision and the dilute viscosities are sensitive to the granular 
temperature difference. For particles of equal mass and equal 
granular temperature the proposed equations boils down to the 
available one that is used for particles with equal mass and equal 
granular temperature. Work is in progress to complete the kinetic 
theory for particles with unequal granular temperature. 
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Notations 
 
λ  =  Mean free path. 
ρ =  Density  
θ =  Granular temperature  
µ =  Particulate viscosity 
ρ = density 
τ = stress tensor 
ε = volume fraction 
εs, max = maximum solid packing 
go= Radial distributive function. 
A, B, D = auxiliary constants 
c = velocity vector 
d   = Particle diameter 
m = mass of the particle 
n  = No. of particles. 
r = position vector 
 
Subscripts 
i = ith phase 

j = jt
s = s
k = k
c = c
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