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Abstract

Curved mixing layers are known to be inherently un-
stable to short wavelength travelling waves (due to the
layer’s inflectional nature) and longitudinal vortex struc-
tures (due to the change in circulation); these are akin
to Görtler vortices. We shall discuss the latter through
their linear evolution and subsequent nonlinear growth.
Depending on the size of the instability and other param-
eters this may cause the flow to breakdown. This mani-
fests itself as large jets in the neighbourhood of the centre
line of the mixing layer. Prior to the actual breakdown,
the flow becomes inflectional in the spanwise coordinate
and has additional structure in the normal direction. One
is compelled to solve the Rayleigh stability equation with
variation in the underlying state in more than one vari-
able; this requires a sophisticated numerical method to
solve the resulting partial differential eigenvalue problem.
The presence of the vortices and their effect on the intrin-
sic travelling waves are discussed, with a view to using
their existence to control these waves.

Introduction

It is well known that the presence of curvature promotes
the evolution of longitudinal vortices. Within mixing
layers these instabilities have been observed experimen-
tally by, for instance, Plesniak, Mehta & Johnson, [8]
and studied in a host of theoretical articles cited herein.
These vortices evolve over a similar scale to the mixing
layer and have spanwise wavelength commensurate with
the layer’s thickness, which renders the governing equa-
tions parabolic in nature.

In Hall [2] the linear evolution of these modes within the
context of boundary layers was solved. It was shown to
be crucial to include the coincident evolution of the layer;
this led to an inevitable sensitivity to initial conditions,
which is clearly demonstrated in experimental work, [10].
It is probable that these vortices will grow to such am-
plitudes that it is necessary to consider nonlinear effects
[2]. In the context of boundary layers the calculations
breakdown and the condition of parabolicity is violated;
due to a reversed flow. However, prior to this location
the flow has become inflectional in both the normal and
spanwise coordinates. It is therefore likely to be prone to
fast growing travelling waves, [3].

Within the context of mixing layers (both incompressible
and compressible) a similar process occurs and it is our
intention to discuss the corresponding structures. The
linear evolution of the modes were discussed [6, 9] and
the nonlinear fate of the modes within an asymptotic
forum was given in [9, 7]. There are several interesting
results which can be derived analytically which rely on
the consideration of the circulation criterion, [9].

The equation governing the secondary instability of the
composite flow (that is containing the underlying profile
and the amendments due to the vortices) is merely the
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e 1: This depicts the growth rate as a vortex with
.08 evolves downstream, for two starting locations.

imensional counterpart of the Rayleigh equation.
be solved using a mixture of finite differences and

o-spectral techniques. The required eigenvalues are
ned using both local [5] and global methods: the lat-
e used merely as a precursor to the local methods,
heir computational expense make their use inappro-
e for the determination of high resolution solutions.

r and Nonlinear vortices

physical problems considered herein can be cate-
d using a few select parameters: Reynolds number,
er number, the spanwise wavelength of the vortex
its initial amplitude), the short streamwise wave-
h of the secondary instabilities, [3, 6]. After the
ions have been non-dimensionalised and the req-
limits have been taken the equations governing

inear evolution of the vortices can be determined.
e are similar to those governing the motion in a nar-
ayer (that is the rôle of streamwise diffusion has
removed) but with the removal of the streamwise
ure derivative. This means that the equations are
olic and consequently amenable to a marching so-
(for which we use a Crank-Nicolson scheme). The

ions are manipulated to eradicate the vortex pres-
and spanwise velocity component. This leads to a
m of two coupled partial differential equations (of
h and second order).

e vortex evolves downstream its growth is measured
lculating an associated energy. Results are shown
ure 1 for a representative case. Note that the vortex
lly decays and subsequently grows. We conjecture
l but the smallest initial disturbances, nonlinear ef-
will play a rôle; in fact this will become evident
g our discussion of the nonlinear calculations.

ure 2 we show two neutral curves in terms of the
spanwise wave number and Görtler number (which
e as a result of the spreading of the mixing layer).



The two curves correspond to different initial conditions
[6]. The right hand branches of the two curves asymptote
together; which corresponds to the calculations far down-
stream. This provides further evidence that the inclusion
of the evolution of the modes is crucial.

The derivation of the nonlinear equations relevant to the
vortices for the mixing layer is identical to that for the
boundary layer, [2]. However in the consideration of
the boundary conditions we find a subtle difference. In
the boundary-layer case the necessity for the plate to be
impermeable yields a condition on the normal velocity
there; this is obviously not present in the mixing layer.
Consequently we need to find an additional condition (to-
gether the conditions that the streamwise velocity at the
extrema of the layer must match with the freestream val-
ues). We elect to use the Ting condition which balances
pressures across the layer. Not only does this complete
the system for the underlying mixing-layer profile but it
also gives us a condition on the mean-flow correction.
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Figure 2: Neutral curves associated with two different
initial conditions for the ratio of stream speeds equal to
2, with curvatures proportional to

√
x.

Each of the components associated with the vortex is ex-
panded as a Fourier series of period 2π/a (where a is the
spanwise wavenumber of the fundamental mode). These
series expansions naturally require truncation and the
results presented herein considered the first 16 harmon-
ics; this value has been demonstrated to be satisfactory.
The nonlinear terms require the convolution of the two
series and in general this is done in the Fourier space,
rather than reverting to physical coordinate. We pause
here to comment that the linear mode form is applied at
x = 20 and the nonlinear terms are initiated at x = 40;
this allows the initial form of the mode to be integrated
for a distance downstream. It is realised that in real-
ity a receptivity problem should be solved, which would
provide us with an initial spectrum. The ultimate down-
stream structure is influenced by these decisions but is
quite robust in overall form. The location at which the
flow experiences an explosive growth of the fundamental
may change by a few percent but the resulting flow will
still, nevertheless, become highly inflectional.

In figure 3 we show the energy which is defined in terms
of the streamwise velocity component, associated with
the first four modes. The fundamental mode’s energy
initially decays, as it will in the absence of the nonlin-
ear terms and subsequently starts to grow. Significantly
the mean-flow correction grows to have almost the same
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e 3: This depicts the energy associated with the
mental, second and third harmonics, together with
of the mean-flow correction.

itude as the undisturbed flow. Notice that the en-
associated with the third harmonic remains, in some
, small compared to that of the fundamental. The
l amplitude shown here is 5%. There is an explosive
h at approximately x = 195. This phenomenon oc-
or all amplitudes above a threshold amplitude: this
well be delayed but will almost always occur pro-
the parameters are conducive to linear growth. In
4 we show the growth rate associated with five runs

varying initial amplitudes. It is tempting to say that
e point at which there is this explosive growth the
ill undergo a transition. We also show the flow pro-
mediately before breakdown in figure 5. However

rucial that we consider temporal instabilities in ad-
to the spatial ones considered above. In fact it is

onjecture that the flow will never attain this state,
will experience transition due to temporal instabil-
Hall & Horseman [3]. Notice as the modes evolve
grow and overcome the basic flow, the location of
reak down in the calculation is shown in figure 4
h coincides with the spike in the growth rate of the
mental).

orth noting that although few runs are shown here,
xperience is that this structure pervades other pa-
ter régimes. This may not be the case if this calcula-
ere to be extended to a fully compressible régime.

at case many different issues come into play. For
nce, the presence of a thermal gradient may cause
s to become excited. These have been shown to be
r in character but can lead to an inhibition of the

rlying inviscid instabilities, [7]. In fact by making
ssinesq approximation one can start to understand
echanisms which are competing in situations with
ture and thermal gradients. In Watson & Otto [11]
ssion is given concerning the way in which asymp-
and numerical treatment of the problem can iden-
ritical levels of interaction, that is where stabilising
ture can dominate over unstable stratification.

igh modes

g layers are necessarily inflectional and are conse-
ly prone to inviscid travelling waves [4]. In the ab-
of these vortex structures we note that the trav-
waves satisfies Rayleigh’s equation (which can be

ssed in terms of the normal velocity or the pres-
. However the presence of spanwise variations means
the travelling waves now satisfy a partial differential
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Figure 4: Growth rates for the fundamental for various
initial amplitudes, with the linear results.

eigenvalue problem, which can now only be expressed in
terms of the wave’s pressure component:(

∂2

∂y2
+

∂2

∂z2
− α2

)
p̃ − 2

ū − c

(
∂ū

∂y

∂p̃

∂y
+

∂ū

∂z

∂p̃

∂z

)
= 0.

This needs to be solved in conjunction with the condi-
tions that the pressure has the same periodicity as the
fundamental mode in the spanwise coordinate and that
at the layer’s extrema it tends to zero. In this equation
the basic flow is comprised of the underlying mixing-layer
profile and the vortex state. In this article we shall cal-
culate the complex phase speed c which corresponds to
a value of the streamwise wavenumber α. We note that
this is not necessarily unique. The imaginary part of the
phase speed is representative of the temporal growth rate
of the modes. We shall now discuss the methods used to
solve this equation.

Numerical Methods

In order to solve the eigenvalue problem at hand we ex-
ploit a standard centred difference approach on the nor-
mal derivatives on a stretched grid. In general this is a
subset of the points used for the marching calculations,
this eradicates the need for interpolation between the
grids. The Rayleigh equation is discretised in the span-
wise coordinate, however the spanwise derivatives are cal-
culated using the Fourier transforms. These differential
operators are constructed by producing the composition
of the following operations: transform from physical to
Fourier space, differentiate in the Fourier space and fi-
nally transform from Fourier space to physical coordi-
nates. We exploit this method since we are aware that
the following numerical approach means that the blocks
will become full and no sparsity can be exploited.

We employ both local and global eigenvalue search tech-
niques. In order to solve the global eigenvalue problem we
can exploit a power method which is intrinsic to MAT-
LAB. This allows us to determine the form of various
eigenfunctions for a specific value of the wave’s stream-
wise wave number. The expense of this calculation is re-
strictive and consequently we use the algorithm presented
in Otto & Denier [5] (which details a local eigenvalue so-
lution technique). This overcomes the problem of renor-
malisation intrinsic to these large eigenvalue problems.
Without normalisation the problem is homogeneous and
only the trivial solution is returned. The above discreti-
sation results in a matrix system, Ax = 0, where A is a
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e 5: Showing the colour contours of the streamwise
ity, noting the large jetting super-velocities. Also
n are contours of streamwise vorticity.
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e 6: Growth rates of the inviscid instabilities asso-
with the mixing layer, at x = 180 and an initial

itude of 5%.

e block diagonal matrix (this is generally block pen-
gonal with full blocks) and the vector x contains the
ure field. We note that in order for there to exist a
rivial solution det(A) must be zero and this deter-
s the values of c. The calculation of this determinant
from trivial. Here we elect to remove one row from
atrix and replace it with the condition that xj = 1

re we are free to choose j) the resulting system can
lved and the dot product of the extracted row and
olution can be used as an error. This is driven to
using a secant method. The choice of which row
move is not fixed and is moved using an algorithm

relies on the previous iterate [1].

ure 5 we show a flow field almost at the point of
down of the calculation. The figure shows two dis-
facets of the profile: the streamwise velocity com-

nt and the streamwise vorticity. We note that the
mwise velocity near the centre line increases dra-
ally at the spanwise location corresponding to the
mum of the vortex and unsurprisingly, decreases in
entre of the period. These jets have an involved
ise structure. By the inclusion of the streamwise
ity contours we hope to show the trajectory of par-
within the flow and show the dominant vortical

ture.
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Figure 7: This shows a contour plot of the pressure wave
associated with the Rayleigh mode.

In figure 6 we show the growth rate associated with the
profile in the presence and absence of the vortex state.
Notice that due to the spreading of the mixing layer the
growth rate of the conventional inviscid instability de-
creases as the flow evolves downstream. Also shown is the
inviscid instability, whose existence is inherently linked
to the spanwise structure. This has a larger growth rate
and persists for more values of the scaled streamwise wave
number of the waves. In figure 7 we show the contours of
the wave’s pressure component (the imaginary part, al-
though due to the normalisation this choice is arbitrary)
which clearly indicates the variation in the spanwise di-
rection. In fact information can be gleaned from the
Fourier decomposition of the modes.

It is noted that at the outset the dominant inviscid insta-
bilities are those associated with the inflection of the ba-
sic flow. This remains the case until a reasonable distance
downstream, however at some point the modes associated
with the vortices start to dominate. It is interesting to
note that this provides a further mode of instability to a
situation which is already absolutely unstable.

Conclusions

In this article we have discussed the evolution of Görtler
vortices within the context of curved mixing layers. In
the linear régime the modes’ fate is inextricably linked to
the inception of the mode, both in terms of its location
and its functional form. However, far downstream the
modes are found to conform to a common structure, a
fact which has been previously exploited by theoretical
investigations. As the modes grow eventually nonlinear
effects will come into play. Within the context of bound-
ary layers this has been shown to lead to a breakdown
of the solution; a similar fate occurs here. It appears
that large super-velocities occur (of the order of twice
the maximum flow velocity) and the flow in the centre
drops below the speed of the slower stream. It is not
clear whether the flow will ever attain this state, since it
is likely that temporal instabilities will come into play.

We have shown that as the vortices evolve downstream
inviscid instabilities become dominated by a mode as-
sociated with the spanwise structure rather than being
shadows of the inherent modes. In order to determine
the structure of these new modes it is found to be nec-
essary to include the effects of the mean-flow correction,
the fundamental and the second harmonic. Despite the
amplitude of the first and third of these being smaller,
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presence is crucial (with the second harmonic be-
erhaps the most important). This has ramifications
considering possible mechanisms for vortex-wave
ction, Hall & Smith [4]. This mechanism provides
te, whereby fast growing instabilities can have a
g-order effect on the mean flow, without becoming

near in character themselves.

entioned previously the inclusion of thermal gra-
s in these problems can have a significant effect.
will manifest itself not only in the modification of
trinsic instability mechanisms but in the excitation
des even in convex situations [9]. This all means

the level of curvature and thermal stratification can
tially be used to tune the instabilities, and conse-
ly enhance or inhibit transition.
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