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Abstract

We consider interactions between varicose and sinuous
oblique disturbances in the Bickley jet, using both non-
linear stability theory (in its nonlinear critical layer form)
and direct numerical simulation using a spectral method.
Nonlinear stability theory indicates that a (nonlinear) in-
teraction between the modes should occur, and our simu-
lations would seem to support this.

Introduction

For plane wakes and jets, it is well known that there may
be two different types of neutral modes with critical layers
centred on the inflection points, viz. the sinuous and vari-
cose modes. The plane (Bickley) jet, which has a sech®y
velocity profile has been used by numerous authors to pro-
vide a good approximation to such a wake behind a bluff
body, is somewhat special in that the varicose and sinu-
ous modes have neutral wavenumbers of 1 and 2 respec-
tively, so that the former is the subharmonic of the latter.
Several studies have explored the possibility of an inter-
action between these two modes. For two-dimensional dis-
turbances, Kelly [5] used Stuart-Watson type nonlinear sta-
bility theory to investigate interactions of this type; how-
ever, he found that there was no modal interaction of the
type assumed. Later, Leib and Goldstein[7] re-examined
the problem for purely two-dimensional disturbances using
a nonlinear-nonequilibrium critical layer, and they found
that there was indeed an interaction between the modes.
Mallier[8, 9] studied three-dimensional disturbances, since
Goldstein[3, 2] had earlier shown that a pair of oblique
waves superimposed on a shear layer could interact non-
linearly to give rise to extremely rapid growth, and also[4]
that when the oblique waves were inclined at +60°, an ad-
ditional interaction could take place between the oblique
waves and a plane wave, so that the growth was faster
still; this last mechanism is known as a “resonant triad”.
Mallier[8] explored the possibility of an interaction between
a pair of resonant triads in the Bickley jet, with one triad
consisting of a plane sinuous mode together with a pair of
oblique sinuous modes inclined at £60° and the other triad
consisting of a plane varicose mode together with a pair of
oblique varicose modes also inclined at +£60°; the motiva-
tion behind this was to see if the triads could interact so
that the growth was more rapid than if only a single triad
were present. Mallier found that interactions could oc-
cur, and his study essentially covered three stages: a linear
stage when the amplitudes of the disturbances were very
small, the “parametric resonance” stage, and the so-called
“fully-coupled” stage[4, 18, 10]. The amplitude equations
presented were of course for the third (fully-coupled) stage,
but the two earlier stages could be recovered from these
equations by rescaling the amplitudes, as discussed in[4].
The study of the fully-coupled stage was a little restrictive
in that it was necessary to assume that, in that stage, the
varicose oblique modes were larger any of the other waves
present which is at odds with the linear theory which says
that the linear growth rates of the sinuous modes are larger
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than those of the varicose modes. This was because in the
earlier parametric resonance stage, when it was assumed
that all of the waves were of the same order of magni-
tude, it had been found that the varicose oblique waves
underwent very rapid growth while the plane waves and
the sinuous oblique waves continued to grow exponentially
in a linear fashion. In addition, the coupling in the equa-
tions in [8] was a little unusual in that the sinuous triad
did not affect the varicose triad, and therefore equations for
the varicose triad were simply those for a single resonant
triad[4, 18, 10]. However, the sinuous triad was strongly
affected by presence of the varicose triad, and furthermore,
if the varicose triad was absent the nonlinear terms in the
equations for the sinuous triad vanished, leaving only lin-
ear equations for those modes. Mallier[9] later studied the
case of two pairs of oblique waves superimposed on the
Bickley jet at the same angle, +6: one pair was varicose,
the other sinuous. Once again, an interaction was found to
occur between the modes. In both studies, [8, 9] the end
result was a set of highly nonlinear coupled (Hickernell-
type) integro-differential evolution equations, the solutions
to which had a finite-time singularity. These equations in-
volved a nonlinear kernel, with the nonlinearity being cubic
in[9] and quartic in[8]. Both studies[8, 9] used nonlinear
critical layer theory and followed the approach taken ear-
lier by Goldstein[3, 4] for a flow with a single critical layer
and a single unstable mode.

The reason these interactions between the varicose and sin-
uous modes are considered important is that it is possible
they can cause extremely rapid nonlinear growth. Unfor-
tunately, at the time the studies mentioned above were
performed, there was little if any experimental or numeri-
cal evidence to corroborate our analysis, and the situation
remains the same today. Some experiments have hinted at
interactions, but have not explored it further. Wygnanski
et al. [20] conducted careful experiments on small deficit
(turbulent) wakes and found that the development of some
aspects of the flow was dependent on initial conditions,
which they attributed to interactions between the varicose
and sinuous modes, and other experiments (e.g.[11, 12])
have also suggested that these interactions may take place.
We should also mention that very rapid amplification of
three-dimensional disturbances has indeed been observed
in plane wakes in both experiments (e.g. [1, 16, 17]) and
numerical simulations[15], but it is unclear (at least to the
present author) how much of that growth is attributable to
the Goldstein mechanisms for three-dimensional instability
and how much is due to an interaction between the varicose
and sinuous modes.

In an attempt to remedy what we perceive as a lack of
numerical verification of the theoretical results, we present
here some preliminary results from direct numerical simu-
lations of the Bickley jet and compare those results to the
predictions of our earlier asymptotic analysis. The outline
of the rest of the paper is as follows. In the next section, we
review the theory and resulting amplitude equations. Af-
ter that, we give the details of our numerical method and



present the results of our simulations. Finally, we make
some concluding remarks.

Review of Theory

In [8, 9], we considered the stability of the Bickley jet u, =
(sechzy,O, 0) to three-dimensional disturbances, either in
the form of two pair of oblique waves,
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or in the form of a pair of resonant triads, consisting of a
two pair of oblique waves at +60 together with two plane
waves,
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From the linear theory, we know that the Bickley jet
has two inflection points at y = zarccosh /3/2 where
up = 2/3, and also two neutral modes with ¢ = 2/3 which
have critical layers centered on the inflection points: a vari-
cose mode with @ = 1 and & = sech ytanhy [13] and a
sinuous mode with o = 2 and & = sech®y [14]. In the
above disturbances, we have either two amplitudes (for the
pairs of oblique waves) or four amplitudes (for the resonant
triad) and the objective of [8, 9] was to derive amplitude
equations for those amplitudes, and examine how they af-
fected each other. In the analysis, it was assumed that the
modes were periodic in time and spatially growing, with the
wavenumber « taking the neutral value of 1 and phase ve-
locity being perturbed slightly from neutral ¢ = 2/3 — pc; .
This perturbation from neutral led to a slow time scale
T = pt on which the amplitudes evolved. For extremely
small disturbances, it was found that the growth was lin-
ear, with A:1(T) = qu)e"llx and similar expressions for
the remaining modes, but for larger disturbances the evo-
lution was nonlinear; the evolution first became nonlinear
when ¢ = p®. For pairs of oblique waves, it was found
that the amplitude equations were (Hickernell-type) inte-
grodifferential equations with a cubic nonlinearity of the
form

A’u + 011411 (3)

/ / a)Au —27'0—7'1)

X A11 —To—T1)A11( —T())dTodT1

] Ts

Figure 1: Cartoon of the finite-time singularity.
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For the resonant triad, the equations were of a similar form
but with a quartic rather than a cubic nonlinearity. In [9],
we solved these equations numerically, using Goldstein’s
numerical scheme [3], and it was found that, as with similar
problems, the evolution of the disturbances went through
3 stages: initially, the disturbances grew linearly, until a
second finite-amplitude nonlinear stage was reached, and
eventually, the oblique waves experienced explosive growth.
Goldstein [3] showed that his equations had a singularity
after a finite time 7, (or at a finite distance downstream),
and was able to fit a structure to it A ~ ao(Ts — T) > .
This same structure applies to both modes for the Bick-
ley jet, and is shown in cartoon form in Fig. 1. Although
our study did not include viscous effects, other studies for
related problems [6, 19] have shown that weak viscosity
can delay the onset of this finite time singularity but not
eliminate it, so that our results are still meaningful at high
Reynolds numbers. The origins of this finite-time singular-
ity are still not entirely clear, but it appears to be connected
to the breakdown of the theory and the onset of a new, still
more nonlinear stage governed by the full Euler equations.

Numerical Simulations

We now turn to our numerical simulations, in which we
have employed a standard spectral (Fourier) method. In
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our computations, we decomposed the velocity into a mean
flow and a perturbation, u = (uo(y),0,0) + @, and then
assumed that the mean flow is independent of time and
the viscosity acts only on the perturbation; in reality, this
would require the presence of a body force to counteract
the effect of viscosity on the mean flow. In our simulations,
we took the base flow to be the jet uo(y) = sech?y —2/3; it
should be noted that the “—2/3” term is included so that
the neutral modes in our simulation have a phase velocity of
zero. Using this standard decomposition, the perturbation
obeys
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The approach we took was to assume that the flow was
periodic in both z (streamwise) and z (spanwise), and use
complex Fourier series in those directions. We truncated
the y-direction, so that our domain was —Y < y <Y
(with Y = 5 in our simulations) rather than —oco < y <
oo and used sines and cosines in that direction. Free-slip
conditions were applied at the domain boundary y = +Y.

We calculated the nonlinear (ueVu) terms in physical space
and derivatives in Fourier space, and used a fast Fourier
transform (FFT) to switch between real and physical space.
In our computations, it was necessary to calculate the pres-
sure, which we were able to do by using incompressibility
and then inverting a Laplacian,

(6)

this is fairly easy to do with a Fourier method. For
the time-stepping, we used an explicit Adams-Bashforth
scheme for the nonlinear terms,

p:—(Vz)_IVO(QOVg);

U1 =ﬂ0+5t(3F0—F_1)/2, (7)
while for the viscous terms, a semi-implicit Adams-Moulton
scheme was used,

U1 =’L~L0+5t(F1+F0)/2. (8)
In each of our runs, the initial disturbance was the linear
inviscid eigenvalue with wavenumber 0.525 for the varicose
mode and 1.050 for the sinuous modes; this initial distur-
bance was obtained by solving Rayleigh’s equation numer-
ically.

In our simulations, we calculated the energy in each mode,
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Figure 3: 3D Run2
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and compared this to the theoretical amplitude of the dis-
turbance. We should mention however that strictly speak-
ing, therefore, we are not comparing like-with-like, since
the two definitions differ slightly. Similarly, our simula-
tions include weak viscosity (a Reynolds number of 1500
was used) which is necessary for numerical stability, while
our theory was inviscid. However, as we discussed earlier,
studies by other authors have indicated that our theory
is applicable to high Reynolds number flows. In addition,
we took a wavenumber of @ = 0.525 in each of our runs,
which was chosen to be reasonable close to the most un-
stable wavenumber for both the varicose and the sinuous
modes, while our theory assumed that a was very close
to the neutral value of 1; we could not use a significantly
larger wavenumber in the simulations because the presence
of viscosity means that modes which are close to neutral
on an inviscid basis would decay in simulations.

Sample 3D Runs

In Fig.s 2-5, we present several different runs for the res-
onant triad, with § = 7/3. Each of the runs shown even-
tually blows up as we lose spectral decay and the higher
harmonics become too large. Paradoxically, this is similar
to the reason for the finite-time singularity in Goldstein’s
amplitude equation. Since the location of the blow-up is
different for each of the runs presented, this by itself would
indicate that an interaction between the modes is occuring.
Our simulations indicate that we are able to capture the
nonlinear stage that appeared in the solution to Goldstein’s
equation, and for the three-dimensional case it would ap-
pear that the modes do indeed exert a significant influence
on each other; an example of this can be seen in the be-
havior of Ai; in Fig.s 2 and 3: the initial conditions for
A11 were the same in both runs, and the difference in the
behaviors of this mode in the two runs is due entirely to
nonlinear interactions between the modes. The initial con-
ditions for the runs shown are as follows: in Run 1, Ao
and A4 were initially zero; in Run 2, Ao, A4o and Aas
were all originally zero; in Run 3, Asg, Ao and A1 were
all originally zero; in Run 4, A4 was originally zero. One
point to notice about Run 3 is that since A11 and Aso were
both initially zero, they remain zero: those two modes can-
not be generated by the interaction of the other two modes.
It is interesting to note in these figures that the behaviour
of one mode depends upon which other modes is present,
which confirms that there is indeed a strong nonlinear in-
teraction between the modes as suggested by [8, 9].

Conclusions

In the preceding sections, we have outlined the theory pre-
sented in [8, 9] for nonlinear interactions in the (plane)
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Bickley jet between the varicose and sinuous modes, and
then presented some of the three-dimensional results ob-
tained using DNS. For both the three-dimensional case
and also the two-dimensional case [7], the nonlinear the-
ory suggests that there is an interaction between the sinu-
ous modes and the varicose modes. The three-dimensional
simulations presented here would appear to confirm that
because the behaviour of a mode clearly differs depend-
ing upon which other modes are present. This behaviour
is quite strong in the three-dimensional case and two-
dimensional simulations not presented here indicate that
the two-dimensional modes also interact but that the in-
teraction in that case is much weaker. We are currently
performing more simulations, although this is a slow pro-
cess (the turnaround time for 3D runs on the UWO Cray
is about 2 months), and we hope to present more complete
results at some point in the future.
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