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Abstract

An exact method is presented for determining the optimal design
of fluid-containing pipelines to enhance their resistance against
divergence instability. The mathematical procedure uses the
transmission matrix technique along with the method of Newton
— Raphson to solve the associated eigenvalue problem.
Calculations are carried out for thin-walled tubes consisting of
uniform modules having different length and cross-sectional
properties. Design variables include the mean diameter, wall
thickness and length of each module. The model accounts for an
elastically supported pipeline in order to cover a wide range of
boundary conditions. Numerical examples demonstrate the
efficiency and effectiveness of the model in arriving at global
optimal solutions.

Introduction

A large number of publications dealing with the eigenvalue
optimization problems can be found in the literature where
several computational approaches have been developed and
applied. Related topics cover both frequency and buckling
optimization [4,6,8] using either calculus of variation methods
for continuous models or mathematical programming techniques
for discrete finite-element models. Such problems are usually
formulated by finding the minimum weight that satisfies
prescribed eigenvalues, or alternatively by maximizing the
fundamental eigenvalue for a given structural weight. Limited
research may be found that deals with maximization of the
critical flow velocity in a pipeline. Borglund [1] formulated
the minimal mass design problem of a cantilevered pipeline for a
fixed critical flow speed. Analysis was performed using the finite
element method to solve the associated equations of motion. No
attempt was made to maximize the critical flow speed for a given
structural mass. Séllstrom [5] maximized the imaginary part of
the fundamental frequency of bending vibration of a cantilevered
uniform beam conveying fluid. The fluid velocity was kept
constant and design variables included the location and values of
lumped masses, springs, or dampers connected to the beam.
Tanaka et al. [7] employed variational principles combined with
finite elements to maximize the critical flow velocity through a
cantilevered pipeline with given structural mass. The pipe inner
diameter was kept constant, while the wall thickness distribution
was determined through the optimization process. The present
paper deals with the maximization of the critical flow velocity
through an elastically supported non-uniform pipeline for a
prescribed total mass. The effect of the pipe inner diameter on
the overall stability, which has not received any attention in
previous publications, is dealt with herein. To avoid the highly
nonlinear shapes of continuous models, which can be difficult to
fabricate and produce economically, a multi-module pipe model
is optimized with the effective design variables chosen to be the
mean diameter, wall thickness and length of each uniform
module. The exact divergence speed is determined using the
transfer matrix technique [3] and solving the associated
eigenvalue problem for known boundary conditions. Appropriate
non-dimensionalization of the various parameters and variables
has led to a naturally scaled optimization model. As a case study,
the developed model is applied to a simply supported pipeline
consisting of two, three and more modules. Extensive computer
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experimentation has shown that the critical flow speed is well
behaved and continuous in the selected design space. Global
optimality has been attained showing significant improvement in
the overall fluid-structure stability as compared with a baseline
design.

Mathematical Formulation

Basic Assumptions

1- Fluid is incompressible and flow is steady and fully developed
laminar. Variation in the velocity across the pipe cross section is
ignored.

2- Effects of structural damping, damping of surroundings and
gravity are not considered.

3- Thin-walled rounded tubular slender pipes are only considered
so that the classical beam theory can be applicable.

Governing Differential Equation

Paidoussis and Issid [2] introduced the basic governing
differential equations of a fluid-flowing pipe. For the case of
static instability, the governing equation takes the form

(EIw")"+msu(u'w’'+uw") =0 (1)

where E = the modulus of elasticity, I = area second moment of
inertia, w = bending displacement, m; = fluid mass per unit
length and u = flow velocity. The notation ()’ means derivative

with respect to the axial coordinate x. It must be mentioned here
that the problem of determining the critical flow velocity in a
pipeline cannot be and never be fully similar to that of the
column’s buckling problem. Some investigators in the field
believe in full similarity, which cannot be true. The distribution
of the shearing force is not the same in both problems.
Furthermore, the axial flow velocity in a non-uniform pipe is not
constant lengthwise, whereas in the case of column’s buckling
the axial force is constant along the entire length.
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Figure 1. Multi-module pipeline model and free body diagram of an
element dx.



Figure 1 shows a general discretized pipeline model composed
of Ny-uniform modules, each of which may have different
length and cross-sectional properties. Setting u’'=0, and

substituting for m=pgAy in equation 1, the governing differential
equation for the Kth uniform module reduces to

EIkW”"+pfAkul%W”=0 2)

It is convenient to deal with dimensionless quantities so that the
analysis can be valid for any arbitrary pipeline configuration.
The various parameters are non-dimensionalized by their
corresponding values of a reference uniform pipe having the
same total length, material and fluid properties. Referring to
Table 1, it is noted that the same symbols that define the actual
parameters are reused to define their corresponding
dimensionless quantities in order to avoid having many
subscripts and symbols in the derived equations. For example,
the notation w<—w/L means that the dimensionless deflection is
equal to its dimensional value divided by the total pipe length.
Therefore, dividing by EI/L®, Equation 2 takes the following
dimensionless form

WA W =0, A= uk f%:—uAmax, k=12 N 3)
k

Ak Ik

where u is the critical flow velocity
cross-sectional area of the modules.

and Ap. the maximum

Quantity Notation Non-dimensionalization

Axial coordinate X x<x/L

Module length Ly Li«LJ/L

Wall thickness ty ety /t

Mean diameter Dy D «Dy/D

Cross-sectional area Ay A—A/A (:Dkz)

2nd moment of Inertia I T« T/1

Bending deflection w w«w/L

Bending moment M M<«M*(L/EI)

Shearing force F F<F*(L¥EI)

Rotational spring K, Ko Ko *(L/ED)

Transversal spring Kw KK, *(L*/ED)

Flow velocity Uy u—uF(pALYED

Structural mass M M«—M/M,
=XDktkLk)

Table 1. Definition of dimensionless quantities. Reference pipe has the
following uniform properties: area A=nD%4, inertia I=nD’t/8, mass
M,=p,nDtL, where p, is the pipe mass density and L total length.

Equation 3 has the exact solution
W(i) = B1+B22+B3Sin7\‘k§+B4COS7\,ki (4)

The constants B; are determined by applying the appropriate
boundary conditions.

Analysis by Transmission Matrix Method

The exact critical flow velocity of a multi-module pipeline model
can be best obtained by applying the transmission matrix
technique [3] and solving the associated eigenvalue problem. The
state vector, Z, at any joint (k) within the pipeline is defined as
follows

Z)-[wo MFJ=[w -w' -Iw" -Iw" (6))
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At two successive joints (k) and (k+1) the state vectors are
related to each other by the matrix equation

(6)

Where [T,Jy is a square matrix of order 4x4 known as the
transmission or transfer matrix of the kth pipe module. Its
individual elements can be obtained by first expressing the
coefficients B; in terms of the state variables at joint (k), and then
expressing the state variables at joint (k+1) in terms of those at
joint (k). Defining C,=cos MLy and S,=sin AL, , the final
derived form of the transmission matrix is:

1 Lo (Ce-D/Td (%-Lk)/lkkﬁ
k

[T =0 1 Sk/Tkhke (1-CR/ kA @)
0 0 Ck Sk/ Ak
0 0 - Ak Sk Ck

For a pipeline made of N,,-modules, Equation (6) can be applied
at successive joints to obtain

Znmn1=[T1Zy (8

Where [T] is called the overall transmission matrix found by
taking the products of all the intermediate matrices of the
individual modules. Therefore, applying the boundary conditions
and considering only the non-trivial solution, the resulting
characteristic equation can be solved for the critical flow
velocity.

Boundary Conditions
In order to make the analysis valid for variety of boundary

conditions, the pipeline is considered to be elastically supported
at both ends. Therefore, considering shear and moment balances,

one gets:
atx=0: w=-(UK,)w", w'=(I/Ky)w" 9.1
atx=1: w=(UK,)w", w'=-(I/Kyo)w" 9.2)

For the common types of boundary conditions, Table 2 gives the
final form of the characteristic equation for determining the
critical divergence speed.

Type of Boundary Characteristic Reference Value of u
Conditions Equation (One Module)
Pinned - Pinned T12T34 — T14T32 =0 3.14159

Clamped - Pinned T|3T34 — T14T33 =0 449336

Clamped - Clamped T13Ty — T14To3=0 | 6.28319

Table 2. Divergence-characteristic equation for common types of
boundary conditions.

Note that divergence instability is not possible for a cantilevered
pipeline, where the non-trivial solution of the associated
characteristic equation results in a vanishing bending
displacement over the entire span of the pipeline. For such a
configuration, only dynamic instability (flutter) can be
considered. This is now under study by the authors, and will be
hopefully published in the near future.

Application and Computational Results

As a basic case of study, we consider first a simply supported
uniform pipeline consisting of one module. Referring to Table 2,
the associated characteristic equation takes the form sini;=0,
which results in the non-trivial solution for the divergence speed:



u="4Dit] (10)

It is obvious that there is no way to increase u above its reference
value m without the penalty of increasing the structural mass
(Mg=Dt;). We consider next, pinned-pinned configurations
consisting of several modules to see how the critical velocity can
be changed with the selected design variables.

Pipelines made of Two Modules
For a pinned-pinned pipeline composed of two modules, the

corresponding transcendental equation for calculating divergence
speed reduces to the following compact form (see Table 2):

C]Sz 7\.1+SIC2 7\.2 =0 (11)
Extensive computer solutions for the above equation have shown
that the computed values of the divergence speed, u, can be
repeated in spite of the wide variation in the chosen design
variables (D, t, L)k, k=1,2. This proves the existence of the
velocity level curves in the selected design space. Figure 2 shows
the developed star-like level curves in the (D,-D,) design space
for a two module model having uniform thickness of unity with
the span divided into two equal portions. Contours of the

structural mass are also indicated.
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Figure 2. Divergence speed and mass level curves for a two module
pinned-pinned pipeline (t,}=t,=1 & L,=L,=0.5).

It is seen that the diameters of the individual modules affect
significantly the behavior of the overall stability of the system, a
factor that has not been considered in previous publications.
Several practical applications in industry utilize pipelines with
different module diameters. Since cost is directly proportional to
structural mass, the level curves of the divergence speed have
been generated for the case of unit dimensionless mass (i.e. the
optimized pipe has the same mass as that of the reference
design). Figure 3 depicts the optimum zone for a constant-
diameter two-module pipeline model. The absolute maximum
value of the divergence speed is seen to be very close to 3.238,
which corresponds to the design point (t,L)x=(.39, .135), (1.095,
.865).
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Pipelines Built of More Than Two Modules

Several other case of studies, including the optimization of three,
four, and more modules, have been implemented and
investigated in detail. For pinned-pinned and clamped-clamped
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Figure 3. Behavior of dfvérgeﬁce ébeéd for simply supported two-module
pipeline with constant diameter.

pipelines, the obtained results have indicated that optimum
patterns must be symmetrical about the mid-span point. When
considering starting designs with even number of modules, it was
found that the optimization process discarded one of the modules
by letting its length sink to zero, or sometimes, by making two
consecutive modules have the same diameter and wall thickness
(i.e. reduced to one module). Therefore, it may be easier to cope
with  symmetrical  configurations, which reduce the
computational efforts significantly by only considering half of
the design variables. For example, in the case of pinned-pinned
pipeline the boundary conditions become:

at x=0

0 (12.1)
0 (12.2)

:W”
"

w
at x=1/2 w =w
The associated characteristic equation takes the form:

T2Tas —Tag Ty =0 (13)
For a symmetrical three-module pipeline, The compacted form of
Equation 13 is
A CES2+20A281C1C2 —A3STS, =0 (14)

The developed isomert curves for patterns with constant
diameters and unit dimensionless mass are depicted in Figure 4.
The final optimum results for different number of modules are
summarized in Table 3. It is important to mention here that the
attained optimum configurations depend, to some extent, on the
prescribed lower limits imposed on the pipe wall thickness. Such
limits are usually related to considerations of local instability that
might be caused by buckling.



N Optimum [ (t, L)k] Umax Gain%
3 [(0.45, 0.15625), 3.3590 6.9
(1.25, 0.34375)]s
5 [(0.2500, 0.075), (0.75, 0.15) 34121 8.6
(1.3409, 0.275)]s
7 [(0.15, 0.050), (0.50, 0.075), 3.4332 9.3
(0.90, 0.125), (1.37, 0.250)]s

Table 3. Optimum patterns of simply supported pipelines with different
number of modules. The subscript (s) denotes symmetry about the mid-
span point.

U———

R 77T
Ly J_ Ly =

(!—h.)l(tz-u) )

|

77
_L L3aLy _— )

Non-Dim. Thickness, t,.

S R

oo &>
3

0.2 03 04 05 06 07 08 09 1
Non-Dim. Thickness, t; .

Figure 4. Optimum zone for a symmetrical three-module pipeline.

Conclusions

As a major stability criterion for the design of flexible pipes
conveying fluid, the divergence speed is maximized for given
total length and structural mass. To avoid the highly complicated
nonlinear shapes of continuous structural models, which can be
difficult to fabricate and produce economically, a multi-module
pipeline model is optimized with the design variables selected to
be the mean diameter, wall thickness and length of each module.
Based on the fact that an exact solution for a uniform pipe is
available and well established, the exact critical flow velocity is
determined using the transmission matrix technique and solving
the associated eigenvalue problem for known boundary
conditions. The number of modules does not affect the accuracy
of the resulting solutions. The present analysis leads to the exact
divergence speed no matter the number of modules is. This can
ensure the exact determination of the static stability boundary.
Non-dimensionalization of the various parameters has eliminated
the need for scaling design variables as usually suggested by
similar optimization procedures. Extensive computer analysis of
a pinned-pinned pipeline model has proved that the divergence
speed, even though implicit function in the design variables, is
well behaved, monotonic and defined everywhere in the selected
design space. The study has also shown that the critical velocity
is very sensitive to variation in the module’s length. Investigators
who use the finite element method and consider only cross-
sectional properties as main design variables always miss this
variable. Finally, the proposed model has succeeded in arriving
at global optimality, showing significant improvements in the
overall fluid-structure stability as compared with a baseline
design. Future study shall consider the effect of support
flexibility on the attained optimum designs as well as flutter
optimization of similar pipeline configurations.
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