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Abstract

The temperature structures in a water-filled shallow wedge
subject to solar radiation obtained from two-dimensional (2-D)
and three-dimensional (3-D) simulations are presented in this
paper. The 3-D results show that the flow experiences a transition
from 2-D to 3-D as it passes through three stages of the flow
development. A comparison between the 2-D and 3-D results
indicates that the 2-D simulation reproduces major flow features
at all stages irrespective of the three-dimensionality.

Introduction

This study considers the natural convection in a water-filled
shallow wedge subject to solar radiation. It is motivated by
increasing interests in understanding the diurnal circulations in
the littoral regions of lakes which play an important role in
promoting exchange of water properties in these regions [1,3,7].
However, the present study focuses on very shallow waters
instead of large-scale lakes, and thus one may also find it
relevant to solar collectors, solar ponds or other facilities utilising
solar energy.

The authors have previously reported results for this problem
obtained from a two-dimensional (2-D) numerical simulation [5].
In that study, the transient flow development starting from an
isothermal and stationary state is investigated. The 2-D
simulation has revealed three distinct stages of the flow
development, namely an initial stage, a transitional stage and a
quasi-steady stage. The initial stage is characterised by rapid
growth of a thermal boundary layer along the sloping bottom due
to heat conduction from the bottom, which absorbs penetrative
radiation reaching that depth. The transitional stage is
characterised by the presence of instabilities emanating from the
bottom boundary which are manifested as rising plumes
translating up the slope. The quasi-steady state is characterised
by a steady rise in average temperature and intermittent presence
of instabilities with reduced intensities. The 2-D simulation has
also confirmed earlier experimental observations using a
shadowgraph technique [6]. However, the application of a 2-D
model for an essentially three-dimensional (3-D) experiment has
limited the accountability of the numerical simulation.

In this study, the transient flow development in a shallow wedge
subject to solar radiation is reinvestigated numerically by solving
the full 3-D governing equations. The temperature structures in
the wedge are discussed, and the results of 2-D and 3-D
calculations are compared.

Formulation and Numerical Procedures

For the 3-D simulation, a wedge of length L, width # and
maximum depth /4 (the bottom slope is 4 = h/L) with rigid non-
slip boundaries at the bottom and end and an open boundary at
the top is considered. The wedge is filled with water initially at
rest and at temperature 7,. At time ¢ = 0, a surface radiation of
intensity /I is initiated and thereafter maintained. When the
radiation travels through a water column, the radiation intensity
at a particular wavelength decreases with depth according to
Beer’s law [1,8]:
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I =1,e” for y <0 1)
where /, is the radiation intensity at a given depth, y the negative
water depth and 7, the bulk attenuation coefficient of water. The
shallow wedge assumption implies that the water depth is less
than the attenuation length of radiation, ie. & < 77", In this case, a
significant amount of radiation reaches the sloping bottom. It is
assumed that any residual radiation reaching the bottom is fully
absorbed by the bottom, and the energy is then released back to
the water in the form of boundary heat flux [1]. Accordingly, the
temperature boundary condition at the bottom is given by

oT/on = — (Hy[k)e 4™ for )
where 7, is temperature, n the direction normal to the slope, Hy
the volumetric surface heating given by H, = Io/(poC,), oo, C,
and k are respectively the density, specific heat and thermal
diffusivity for water at T, x the distance from the tip.

y = —Ax

The flow and temperature changes within the wedge are then
governed by the 3-D Navier-Stokes equations and energy
equation with Boussinesq assumptions:

u, +ou, +ovu, + wu, = —pg'p, + W 3)
v, Fuv, + v, + wy,

= —py'p, + W+ gB(T - T) “)
W, +uw, +vw, + ww, = —pglp. + W32w %)
T, + ul, +vT, + wl, = kV?T + Hyne” 6)
ug +v, +w, =0 7

where u, v and w are the velocity components in the horizontal,
vertical and transverse directions, x, y and z are the
corresponding coordinates, p pressure, g acceleration due to
gravity, f and v are respectively the coefficient of thermal
expansion and kinematic viscosity for water at 7. The second
term on the right hand side of the energy equation (6) quantifies
the absorption of radiation by the water (see also [1]).

The temperature and velocity boundary conditions for the 3-D
simulation are the same as those for the 2-D simulation (refer to
[5] for details) except that additional periodic conditions are
prescribed in the transverse direction in the 3-D case.

Since the water body in the wedge is heated continuously by
radiation, and there is no heat loss through the boundaries, the
water temperature will keep increasing without a limit, and there
will be no steady state in terms of temperature. However, with a
constant surface radiation being applied, a quasi-steady state may
be reached in which the temperature gradients and flow
velocities become steady. In the quasi-steady state, the
temperature increases at the same rate everywhere in the tank,
and the net increase of the temperature is a function of time.
Therefore, the temperature can be split into two components, a
spatially averaged temperature which increases in time and a
spatially variable temperature which has a steady state spatial
distribution after a transition. In this study, a quasi-steady
temperature equation with respect to the spatially variable
temperature (the non-dimensional form is given by Equation
(11)) is solved. A comparison between Equations (6) and (11)
shows that an additional heat sink (2Hy/h) is introduced in the
temperature equation. This is to balance the linear growth of the



spatially averaged temperature. Details regarding the quasi-
steady state simplification can be found in [5].

The quantities in the system equations comprising the Navier-
Stokes equations and the quasi-steady temperature equation are
normalised by the following scales: length scale: x, y, z ~ &; time
scale: ¢ ~ h¥k; temperature scale: (7 - Ty) ~ Hyh/k; velocity scale:
u, v, w ~ klh; pressure gradient scale: p., py, p. ~ pgBHoh/k;
attenuation coefficient scale: 7 ~ 4. The system equations are
then rewritten in dimensionless forms as follows:

u, +uu, +vu, + wu, = —Pr2Grp, + Prviu )
Vo Fuv, + v, o+ wy,
= —PrzGrpy + Prv2y + PriGrT Q)
W, +uw, +ww, + ww, = =PriGrp, + PrVZw  (10)
T, +ul, +vT, + wl, = V2T + (ge™ - 2) (11)
u +v, +w, =0 12)
where Pr and Gr are Prandtl and Grashof numbers defined as:
Pr= vk (13)
Gr = gPBHh* vk, (14)

All quantities in Equations (8) ~ (12) are dimensionless. The
corresponding 2-D model can be found in [5]. The 2-D and 3-D
models are then solved using a finite difference method. Detail of
the numerical procedures can be found in [4].

Numerical Results

2-D and 3-D calculations are now carried out in a triangular
domain of dimensionless length of 10, width of 5 and depth of 1.
The bottom slope is 0.1, and the dimensionless bulk attenuation
coefficient is set to 0.37. The convective flow is calculated at a
Grashof number Gr = 2.51x10° and a Prandtl number Pr = 6.83.
All these parameters are chosen from the experiment [6]. To
avoid singularity at the tip in numerical calculations, the tip is cut
off at x = 1, and an additional rigid non-slip and adiabatic wall
boundary is assumed here. It is anticipated that the cut-off of the
tip will not modify the flow significantly.

In the 2-D case, an 81x61 non-uniform structured mesh is
constructed in the (x, y) plane so that nodes are effectively
clustered to the vicinities of all boundaries. A test of mesh and
time-step dependence is conducted prior to the calculation by
halving the grid spacing and time step simultaneously so that the
CFL (Courant-Freidrich-Lewy) number remains the same. No
significant difference in the numerical solutions has been noticed
from the refinement of the mesh (refer to [5]). Therefore, the
81x61 mesh is used for the present calculation. In the 3-D case,
the 3-D mesh is simply an extension of the 2-D mesh along the z
direction, in which nodes are equally spaced (recall that periodic
boundary conditions apply in the transverse direction). The final
mesh for the 3-D calculation is 81x61x41. A fixed time step of
10 is used throughout this study.

As reported in [5], three stages of the flow development can be
identified from the numerical simulation. The present study is
concerned with the temperature structures only, and the 2-D and
3-D temperature structures are compared here.

Temperature Structure at the Early Stage

The temperature structures within the wedge at the early stage
after the initiation of the surface radiation are presented in Figure
1 with Figure la giving the iso-surfaces of temperatures obtained
from the 3-D calculation and Figure 1b giving the temperature
contours obtained from the 2-D calculation. Note that the
temperature data presented here is obtained by solving the quasi-
steady state temperature equations, in which a heat sink is
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introduced to balance the linear growth of the spatially averaged
temperature with time. A negative value of temperature in the
enclosure indicates a lower growth rate of the temperature
relative to the mean growth across the tank, and a positive value
indicates a higher growth rate relative to the mean growth.
Therefore, it is the relative value rather than the absolute value of
the temperature that is meaningful to subsequent discussions.
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Figure 1 Temperature structure at the early stage. (a) 3-D simulation.
(b) 2-D simulation.

The growth of a thermal boundary layer along the sloping bottom
is clearly demonstrated by the temperature structures in Figure 1.
It is observed from both 2-D and 3-D calculations that the
temperature in a region close to the sloping bottom increases
sharply at the early stage. This is due to the diffusion of heat flux
from the sloping boundary, and thus indicates the growth of a
thermal boundary layer. Apart from this boundary region which
has positive temperatures, the temperatures in the rest of the
enclosure are negative. Therefore, the location of the 7 = 0 iso-
surface, which is indicated in Figure 1 (Ay is the distance above
the bottom), approximately represents the boundary of the
thermal layer. It is seen in Figure la that the iso-surface of 7= 0
moves quickly away from the sloping bottom, indicating a rapid
expansion of the thermal boundary layer. It is also found that the
temperature variation in the negative region is negligible
compared with that of the boundary region, suggesting that the
bottom heating is dominating the radiation absorption by the
water column at the early stage.

Figure 1a shows that the iso-surfaces of 7'= 0 are approximately
parallel to the sloping bottom. This is also the case for all
positive temperatures within the thermal boundary layer at this
stage. Outside the thermal boundary layer, the iso-surfaces of
temperatures are horizontal. Figure la also shows that the
temperature structure is purely 2-D at the early stage, and thus is
accurately captured by the 2-D simulation (Figure 1b). A
quantitative examination of the positions of the 7= 0 iso-surfaces
and contours indicates that the 2-D and 3-D simulations follow
closely until the early transitional stage (see the section below).

The growth of the thermal boundary layer generates a horizontal
temperature gradient as well as an adverse vertical temperature
gradient. The former is the initial driving force of a large-scale
circulation in the enclosure, while the latter is the direct cause of
the convective instability to be discussed below.

Temperature Structure at the Transitional Stage

While the surface radiation is maintained, the residual radiation
continues to be absorbed by the bottom, and the energy continues
to be released from the sloping bottom to the lower layer of the



water body. As a consequence, the thermal boundary layer
continues to grow. Since this process generates an adverse
temperature gradient in the thermal boundary layer, a Rayleigh-
Bénard instability also develops while the thermal layer is
growing. When the adverse temperature gradient is great enough,
an instability will manifest itself as vertical convection. The
convective instability is observed in the numerical simulations.

Figure 2 presents both 2-D and 3-D results showing the
occurrence of rising thermals at the transitional stage. It is seen
from the temperature iso-surface at ¢+ = 0.01 (Figure 2a) that
crests containing warm water are forming from the thermal
boundary layer at different locations along the streamwise
direction. These structures originate from the bottom thermal
layer and are quickly amplified. They are eventually released
from the thermal layer into the core flow and rapidly disperse
into the upper cold layer. It is interesting to see in Figure 2a that
the overall flow remains 2-D at this time despite of the onset of
convective instability, and thus it is again accurately reproduced
in the 2-D simulation (Figure 2b). The crest-like structures are
different from the so-called plumes, which are typically 3-D.
This is the early stage of the secondary convection, and it lasts
only for a short time.
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Figure 2 Temperature structures after the onset of convective instability.
(a) 3-D simulation, t = 0.010. (b) 2-D simulation, t = 0.010. (c¢) 3-D
simulation, t = 0.015. (d) 2-D simulation, t = 0.015.

At t = 0.015 (Figure 2c), the 2-D secondary convection has now
become 3-D, and it is very likely to form 3-D rising plumes,
which are indeed observed at later times. Since the upper fluid
layer is cold at this stage, the plumes are seen to penetrate
through the entire local water depth. It is noteworthy that the
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burst of rising plumes is not regular; there are no fixed locations
and frequencies in this process. In addition, it is observed that the
rising plumes are carried by the primary circulation up the slope.
Therefore, no stable configuration of the temperature structure
will be reached. However, a quasi-steady state pattern will be
reached at a certain stage (see Figure 3). Despite the three-
dimensionality of the flow at this stage, the major features of the
temperature structure are still closely reproduced in the 2-D
simulation (Figure 2d), and the 2-D results have demonstrated
qualitatively similar properties of the flow as the 3-D results.

Temperature Structure at the Quasi-Steady State

In the present case, the heat conducted into the thermal boundary
layer is convected away from this layer by both the primary
circulation and the secondary flow due to the convective
instability. At a certain stage, the heat conduction and convection
reach a balance, and the growth of the thermal boundary layer
ceases. The horizontal temperature gradient in the thermal
boundary layer will maintain a steady upwelling flow along the
sloping bottom, while the vertical adverse temperature gradient
will maintain a secondary motion. Therefore, a quasi-steady state
is reached.
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Figure 3 Typical temperature structures at the quasi-steady state. (a) 3-D
simulation, t = 0.2. (b) 2-D simulation, t = (.2.

The typical temperature structures at the quasi-steady state are
shown in Figure 3, which presents the results obtained from both
2-D and 3-D calculations. At this stage, distinct horizontal
temperature gradients are established in both the upper water
layer and the thermal boundary layer. The overall flow structure
does not change significantly. However, the detail of the flow
structure is modified by the intermittent burst of rising thermals
along the thermal boundary layer. The intermittent convection is
governed by a cyclic process as described by [2]: the formation
of a thermal boundary layer by diffusion, the destruction of the
layer by convection and the reformation of the thermal boundary
layer by diffusion. A comparison between Figures 2 and 3 shows
that the intensity of the secondary convection is reduced at the
quasi-steady stage. This is due to the development of a stabilising
upper layer underneath the water surface, which tends to
suppress the secondary convection. At this stage, the rising
thermals disperse completely before reaching the water surface,
in contrast to a penetration of the entire depth in the transient
state.

With the existence of the secondary convection, the flow remains
fully 3-D throughout the quasi-steady state (Figure 3a). It is
interesting to see that the 2-D simulation still qualitatively
captures the major features of the flow (Figure 3b). This is due to
the isotropic features of the plumes in the x-z plane. The 2-D



temperature structure plotted in Figure 3b can be interpreted as a
slice within the (x, y) plane extracted from the 3-D structure
(Figure 3a). Nevertheless, certain features such as the wavelength
of the secondary motion in the transverse direction cannot be
observed from the 2-D simulation.

A comparison between the 3-D results given in Figures 2 and 3
indicates that the secondary convection, comprising of more or
less regularly spanned convection cells, is also well established at
the quasi-steady stage. Clearly, the secondary convection in the
upper water layer has a dominant wavelength along the
transverse direction near both the shallow and deep ends (Figure
3a). In fact, there is also a dominant transverse wavelength for
the entire thermal boundary layer. It is also seen in Figure 3a that
the transverse wavelength for the upper layer increases along the
streamwise direction. These 3-D features can be observed only
from the 3-D simulation.

Horizontal Heat Transfer

The horizontal heat transfer rate is a quantity of practical
interests. It is defined in 2-D and 3-D domains respectively as
(refer to [3])

Hx) = [, [uT - g—zj dy (15)

I w0 oT
H(X) = W I() I—Ax [L{T - E] dde (16)
where H(x) is the horizontal heat transfer rate across a vertical
sectional plane at a given x location. Here, the dimensional
quantity has been normalised by Iyh. It is then integrated along
the horizontal direction as follows

H = %jj H(x) dx 17

where H is the average horizontal heat transfer rate.
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Figure 4 Time series of horizontal heat transfer rate obtained from 2-D
and 3-D simulations.

The time histories of the averaged heat transfer rates obtained
from both 2-D and 3-D simulations are plotted in Figure 4. Both
plots indicate three stages of the flow development. Note that the
two curves overlap at early times, supporting the premise that the
early flow development is truly 2-D. It is seen in Figure 4 that
there is a distinct dip in the time series of the horizontal heat
transfer at early times. This is due to a strong up slope flow of
warmer water and a weak return flow of cooler water at this
stage. The horizontal heat transfer fluctuates after the dip,
indicating the onset of the convective instability and the start of
the transitional stage. Both 2-D and 3-D calculations predict that
the switch from the initial stage to the transitional stage occurs at
about # = 0.011. In the transitional stage, the fluctuation of the
heat transfer rate is strong and irregular. After a quasi-steady
state is reached, the horizontal heat transfer oscillates about a
stable mean value with reduced amplitude.
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Figure 4 indicates that the quasi-steady horizontal heat transfer
predicted in the 3-D simulation is slightly higher than that
predicted in the 2-D simulation. The difference in the time-
averaged values (for ¢ = 0.18 to 0.22) is about 6%. It is also
noteworthy that the calculated heat transfer from the 3-D
simulation fluctuates at smaller amplitude than that from the 2-D
simulation at both the transitional and quasi-steady stages. This is
because the heat transfer from the 3-D simulation is averaged
over the transverse direction, whereas that from the 2-D
simulation is representative of the values on a single sectional
plane.

Conclusions

The temperature structures in a water-filled shallow wedge
subject to solar radiation are revealed based on numerical
solutions of both 2-D and 3-D governing equations. The results
verify an early claim based on a 2-D calculation that the flow
development from an isothermal and stationary state passes
through three stages, an initial growth stage, a transitional stage
and a quasi-steady stage [5]. In the initial and early transitional
stages, the flow is essentially 2-D, and it becomes 3-D at later
stages. It is interesting to see from the present comparison
between the 2-D and 3-D simulations that the 2-D simulation
reproduces the major flow features at all stages irrespective of
the three-dimensionality, and it predicts a horizontal heat transfer
rate which is sufficiently close to the 3-D prediction. Therefore,
the 2-D model can be used to extract additional flow details with
confidence. However, the nature of the 2-D model does not allow
a full resolution of the detail of the secondary convection.
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