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Abstract

A laboratory investigation of exchange flows near the two-layer
hydraulic limit is used to examine the generation of shear in-
stability at the interface dividing the two layers. Regimes char-
acterised by either Kelvin–Helmholtz or Holmboe’s instability
are found to be separated by a well-defined transition. The tran-
sition from Kelvin–Helmholtz to Holmboe’s instability is com-
pared to scaling arguments that draw on elements of both two-
layer hydraulic theory and linear stability theory.

Introduction

Shear instability is the process by which kinetic energy is drawn
from the sheared velocity field, and converted to potential en-
ergy via mixing of a stable background density gradient. The
most commonly studied class of shear instability is the Kelvin–
Helmholtz (KH) instability (see [5, 6] for example). Another
instability was predicted theoretically by Holmboe [4], but has
rarely been observed in experiments, and has been called Holm-
boe’s instability. In this paper we present results of laboratory
experiments which enable us to examine the transition from KH
to Holmboe’s instability. These instabilities are observed in a
bi-directional exchange flow which resembles the two-layer hy-
draulic solution [1] for exchange flow through a contraction.

Two layer hydraulic exchange �ows

The steady state solution for density-driven exchange flow
through a contracting channel is originally due to Wood [11],
with further major developments from Armi [1] and Lawrence
[7]. This solution is derived from the conservation of energy
and mass in a two-layer, inviscid, non-diffusive fluid, and is
frequently referred to as the two-layer hydraulic solution. It is
sufficient for the purposes of this paper to note that, if the vol-
ume flux in each direction is equal, the difference in velocity
between the two layers is constant in the streamwise (x) direc-
tion, and is given by

∆U � u1�u2 � �g�H�1�2� (1)

where ui�x� is the layer velocity which is constant in z, H is
fluid height and g� � g∆ρ�ρ0 is the reduced gravity based on
the density difference ∆ρ between the layers, the gravitational
constant g and reference density ρ0. Furthermore, the arithmetic
mean velocity at any point is given by

Ū�x� �
u1 �u2

2
� (2)

and is always directed away from the centre of the contracting
region (except at x � 0 where Ū � 0).

Shear Instability

Consider a three layer background flow with piecewise profiles
of fluid velocity and density as shown in figure 1. Based on
Hazel [3], we define a bulk Richardson number, J � g�δ��∆U�2

where δ is the thickness of the shear layer. We also define a
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e 1: Piecewise profiles of velocity and density used for
ity calculations.

ess of the density interface η as shown in figure 1, and
tio of layer thicknesses R� δ�η.

ominant wavelength and phase speed of instabilities in
flow can be predicted by finding the fastest growing lin-

sturbance [8]. In the absence of viscosity and diffusion,
ear stability analysis for the case when R � ∞ (η � 0)
ts two distinct types of instability [2]. If J � 0�046, an
ility will form which has zero phase speed and relatively
growth rate. This is a Kelvin-Helmholtz instability [2].
� 0�046, the fastest growing instability is Holmboe’s in-
ity which has a higher wavenumber and finite phase speed
e to the mean shear. This instability is composed of a
f oppositely propagating modes which interact to produce
d mixing of the background density gradient.

ossible that viscosity may damp instabilities which form
The extent of viscous damping will depend upon the
lds number, Re � ∆Uδ�ν. The purpose of our experi-
was to investigate the type of instabilities which formed
nction of bulk Richardson number.

riments

xperiments were conducted in a 2�58�0�53�0�60 m tank,
0.50 m long perspex insert forming the contracting re-

A sluice gate at the left-hand end of the insert separated
water in the left-hand reservoir from saline water in the
hand reservoir. Once the sluice gate was opened, dense
flowed through the contracting channel, producing a fresh
return flow. Quasi-steady exchange flow lasted for be-
3 and 9 minutes.

urements of the density and velocity fields were taken dur-
e experiments. The evolution of the interface was ob-
by seeding fluid in the left-hand reservoir with Sodium

escein, a fluorescent dye. The flow was illuminated from
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Figure 2: Still photographs from different parameter regimes.
(a) Experiment S1, J � 0�058; (b) S2, J � 0�084; (c) S3, J �
0�121; (d) S4, J � 0�103.

below by a vertical light sheet of width between 5 and 15 mm.
Images were taken using either a CCD video camera, or a SLR
camera placed 1.6 m from the tank perpendicular to the flow.
The density interface thickness η was measured by fitting a tanh
function to the vertical profiles of intensity I using the definition
η � ∆I��∂I�∂z�max.

The velocity interface thickness was measured by dropping
crystals of Potassium Permanganate of diameter 0.5–1 mm into
the fluid. The crystal left a streak of dye in the fluid, allowing
reconstruction of the fluid velocity profiles using images from
the video camera. The interface thickness was measured from
the velocity profile using δ � ∆U��∂U�∂z�max.

Results

When the sluice gate is opened, some mixing occurs at the
boundary between the two fluids. Therefore, when the quasi-
steady exchange flow forms, the interface contains some mixed
fluid. The diffuse interface subsequently undergoes sharpening
as a result of advection of reservoir fluid into the channel, and
the divergence of the fluid as it accelerates through the contrac-
tion. In some experiments a sharp stable interface forms, which
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mately disturbed by instabilities. In other cases the onset
tability occurs shortly after the exchange begins.

ure 2 we show one photograph from each of four differ-
periments labelled S1–S4. Estimates of bulk Richardson
er for each experiment is shown in the caption, and will be
sed more fully below. In experiment S1 the qualititative
iour of KH instability is observed, as shown in figure 2(a).
billows are formed which do not travel with respect to

ean fluid flow: the instabilities are dragged away from the
of the contraction by the mean shear. The billows grow
e amplitude and then collapse, after which the shear flow

ts fluid away from the mixed region and acts to reduce the
ace thickness. Sharpening of the interface ensues, thereby
asing stability until another perturbation forms.

interface perturbations in experiment S2 exhibit features
h KH and Holmboe’s instability. For instance, figure 2(b)
res one such instability which overturns the central density
ace, yet is travelling with respect to the mean flow. This is
tent with flows simulated by Smyth & Peltier[10] which

ose to the KH–Holmboe transition point.

creasing the fluid height again (experiment S3, figure
e reach a state which clearly shows the characteristics of
boe’s instability. The two component Holmboe modes are
: the downward cusping wave is travelling to the left and
ward cusping mode is travelling right.

iment S4 shown in figure 2(d) has the same H as S3, but
e the density difference so that, according to two-layer hy-
c solution, the fluid velocities are the same as in S1. The
ved flow clearly shows the character of Holmboe’s insta-
with two oppositely propagating modes.

volution of instabilities with time is best visualised with
-time diagrams. To construct these diagrams we use a
er of sequential video images which show the density field
icated by the fluorescein dye. By finding interface posi-
t all points in x and t we are able to plot the perturbation
interface height from the running mean. This is done in
3 for experiments labelled I1–I4.

ransition from KH to Holmboe’s instability is clearly il-
ted by figure 3. A signature of KH instability is that dis-
ces propagate away from the centre of the contraction as
in figure 3(a). In contrast, the Holmboe modes have con-
elocity relative to the mean shear. This is shown in figure

, with waves travelling slowly as they propagate towards
ntre of the contraction, and speeding up as they exit the
ction. In figure 3(b), the x–t diagram for experiment I2,
H and Holmboe’s instability are present.

icting modes of instability

g of stability parameters

s section we consider some simple scaling arguments
allow us to include the first order effects of molecular

ity and diffusion in determining the finite thicknesses η
in a hydraulic exchange flow and hence evaluate aspects
stability of these flows. The finite thickness of the ve-
interface, δ is due to the viscous diffusion of momentum
ome timescale τ, or

δ� �ντ�1�2� (3)

ost appropriate timescale will be related to the fluid ve-
and a horizontal length-scale L over which the two fluid
are in contact, τ� L�∆U . This can be combined with (1)
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Figure 3: The evolution of instabilities shown in x–t diagrams.
(a) Experiment I1, J � 0�065; (b) I2, J � 0�079; (b) I3, J �
0�096; (b) I4, J � 0�119;

and (3) to give,

δ�
�νL�1�2

�g�H�1�4
� (4)

which gives the dependence of the velocity interface thickness
upon external parameters.

The density interface thickness can be estimated using the same
technique, using the molecular diffusion of salt κ instead of ν,

η� �κτ�1�2� (5)

The application of this argument is complicated by the density
interface being thinner than the velocity interface. Therefore,
the fluid velocity at the edge of the density interface will be re-
duced in proportion to the ratio R of the two thicknesses. For
this reason, the timescale used for estimating the density inter-
face is τ� L�∆U�η�δ�, giving

η�
κ1�3ν1�6L1�2

�g�H�1�4
� (6)

The interface thickness is dependent on the choice of horizon-
tal length-scale L. The dominant horizontal length-scale in the
problem is the length of the channel which is the same value
for both velocity and density interfaces, giving the value of the
ratio of thicknesses from (4) and (6) to be

R�

�
ν
κ

�1�3

� Sc1�3� (7)

where Sc is the Schmidt number.

We are now able to estimate the bulk Richardson number in this
flow. From (1), (4) and the definition of J, we obtain

J �
�νL�1�2

g�1�4H5�4
� (8)
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e also able to estimate the Reynolds number using (1), (4)
e definition of Re which gives

Re�
�g�H�1�4L1�2

ν1�2
� (9)

caling arguments shown here demonstrate the dependence
bility parameters upon relevant external controllable pa-
ers for the exchange flows considered here. By varying g�

, both Re and J change, but R is constant. Note, however,
and Re depend weakly upon both external parameters,
J varies strongly with H. Therefore we expect H to be
imary cause of variations in stability. At large values of
ill decrease, and KH billows are likely; as H is decreased

ay pass through the transition to Holmboe’s instability.

arison of experiments with scaling arguments

urements of δ and η are found to be consistent with (4)
) above. A close fit with experimental data is obtained by
g

δ� 1�5
�νL�1�2

�g�H�1�4
� (10)

η� 1�1
κ1�3ν1�6L1�2

�g�H�1�4
� (11)

tio of thicknesses can be calculated from (10) and (11) to

R� 1�4Sc1�3
� 12� (12)

s much larger than the threshold value for the formation
lmboe’s instability, validating the use of R � ∞ in the

ity calculation.

(10) and (8) we can write

J � 1�5
�νL�1�2

�g�H5�1�4
� (13)

unctional dependence of J on g� and H is shown by con-
of constant J in figure 4. The right-hand solid contour
0�046) is the point at which the KH–Holmboe transi-
ccurs in the linear theory. The left-hand solid contour
�071) is the point above which KH instability cannot oc-
the linear theory. Figure 4 contains information about the
f instability observed in each experiment showing Holm-
instability occurring at high J and KH instability at low J.
ansition point occurs at J � 0�08.

y we use (9) to predict the variation of Reynolds number
flow. Again we substitute (10) to give

Re� 1�5
L1�2�g�H�1�4

ν1�2
� (14)

that there is a weak dependence of Reynolds number on
imental parameters, so that the range of Reynolds numbers
te small. Nonetheless, the value of Reynolds numbers in
w range between 160 and 220, indicating that viscosity
lay a role in determining stability characteristics of the

ffect of finite viscosity is to damp the high wavenumber
ilities. Smyth et al. [9] included viscosity in the stability
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Figure 4: The value of g� versus H for each experiment. Dashed
contours are levels of constant J, with the two solid contours at
J � 0�071 and J � 0�046. The open symbols indicate Holmboe’s
instability was observed, and symbols filled with black indicate
KH instability. For experiments in which both forms of instabil-
ity were observed the symbol is filled grey. Experiments I are
represented by the symbol �, with I1 being the filled square.
Experiments S are shown by � with S1 filled. Experiments I4
and S4 are coincident and lie in the top left quarter of the frame.

analysis and demonstrated that while the general features of the
stability diagram are unchanged, viscosity may act to preferen-
tially dampen the Holmboe modes (see figure 2 of that paper).
The small Reynolds numbers in the experiments presented here
indicate that it is likely that the disparity between linear stability
predictions and observations of the KH–Holmboe transition is
due to viscous effects.

Conclusion

Observations of the KH–Holmboe transition showed a strong
dependence on the height of the exchange flow. This feature
is at first startling, but can be reconciled by scaling arguments
which predict the bulk Richardson number by combining two-
layer hydraulic theory, one dimensional vertical diffusion and
linear stability theory. The bulk Richardson number (which
governs linear stability) is strongly dependent on H, the fluid
height, as shown in (13), and depends weakly upon reduced
gravity. This scaling was used to determine a critical value
for the KH–Holmboe transition, which was found to be signifi-
cantly larger than the linear stability prediction of the transition
point. The disparity between the predicted and observed posi-
tion of the KH–Holmboe transition is most likely due to viscos-
ity.
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