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Abstract

Gordeyev and Thomas[6] recently found that measure-
ments of the large-scale structures, extracted using Lum-
ley’s POD, were self similar in the intermediate and far
field of the plane jet as predicted by Ewing[l]. It is
demonstrated here that the equations for the two-point
velocity correlation tensor have self-similar solutions in
the plane jet so that the orthogonal modes extracted
using the POD should be self-similar as Gordeyev and
Thomas found. It is also shown that the scaled two-
point velocity correlation should be homogeneous in the
mean flow direction if the coordinate is rescaled using
a logarithmic function. Gordeyev and Thomas did not
measured the correlation in the mean flow direction so
this prediction could not be verified.

Introduction

There is currently considerable interest in understanding
the dynamics of the large-scale structures in turbulent
flows and developing simple models for the development
of these structures. One significant challenge in develop-
ing low-dimensional models for turbulent shear flows is
including the development of the flow in the mean flow
direction. Currently, this is ignored and it is assumed
the flow is homogeneous in the streamwise direction [11].
This simplifies the models but it is not clear whether the
models include all of the important physics.

Spalart [9] incorporated the non-homogeneity in the
mean flow direction in Direct Numerical Simulations of
turbulent boundary layers by recognizing the profiles of
the mean velocity and turbulent stresses evolve in a self-
similar manner. This approach was developed using the
single-point similarity theory so it only accounted for the
growth of the boundary layer in the non-homogeneous
shear direction. It is known, however, that the charac-
teristic length scale of the large-scale structures grow in
the streamwise direction at the same rate as the non-
homogeneous direction. The characteristic time scale of
these motions also change affecting the pressure feedback
mechanisms in free-shear flows. Techniques must be de-
veloped to model these effects in order to determine their
role in the development of the large-scale structures in
turbulent shear flows.

One technique is to extend the similarity analysis of the
governing equations to measures of the large-scale struc-
tures. Physically, similarity of the single-point moments
implies the turbulent flow is evolving in an equilibrium
manner. This can only be true, however, if the underlying
turbulent structures are evolving in an equilibrium man-
ner in which case the governing equations for more com-
plex measures of the large-scale structures should also
have self-similar solutions.

Ewing et al. [1, 2, 3] showed that the governing equations
for the more general two-point velocity correlation tensor
have self-similar solutions in several flows including the
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plane and axiysmmetric jets and the temporally plane
wake. Ewing et al. [3] also showed the predictions of the
theory were in good agreement with data from two direct
numerical simulations of the temporally evolving wake.
Recently, Gordeyev and Thomas[6] performed measure-
ments of the two-point velocity correlations in the inter-
mediate and far field of a high-Reynolds-number plane jet
and used Lumely’s Proper Orthogonal Decomposition[8]
to extract modes to represent the large-scale structures.
They found the POD modes and eigenvalues were self-
similar as predicted by Ewing [1]. The analysis of the
governing equations for the plane jet and the implica-
tions of the result on the representation of the large-scale
motions are discussed here.

Self-Similarity Solution for the Two-point Correlations

The analysis of the plane jet differs from both the axisym-
metric jet and the plane wake because the local Reynolds
number of the flow changes as the flow evolves down-
stream. In particular, George [4] showed that the gov-
erning equations for the mean momentum and turbulent
Reynolds stresses in the far field of a plane jet have self-
similar when § the jet-half width is given by § ~ z; and
the mean velocity scale U, is given by U, ~ £~/2. Thus,
the Reynolds of the flow given by
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increases as x1 the distance downstream of the jet’s vir-
tual origin increases. This causes the ratio of the size
of the energy containing eddies and dissipation scales to
change as the flow evolves downstream so a single set
of self-similar solutions can not describe the evolution of
both the large- and small-scale motions in the plane jet.
Instead, following the approach outlined by Kolomogorov
[7], the motions are divided into large-scale energy con-
taining eddies and small-scale motions that dissipate the
energy. The objective here is to determine if governing
equations for measures of both these motions have self-
similar solutions that are compatible with each other.

Large-Scale Motions

The evolution of the large-scale motions can be examined
by considering the two-point velocity correlation for large
separation distances. The first-order governing equations
for these correlations in the far field of the plane jet is
given by
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where ;1 is the coordinate in the mean flow direction,
x2 is the coordinate in the cross-stream direction, 3 is
the coordinate in the homogeneous direction, and r3 =
x3 — x4 is the separation distance in the z3 direction.
Here, U;, u;, Uj, and v are the mean and fluctuating
velocities evaluated at two independent points, x; and
x}, in the jet

The mean continuity equation and the first order mean
momentum equations given by
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must also considered in the analysis in order to deter-
mine the constraints on the scales for the mean velocity
profile. Here, M, is the momentum flux of the jet per
unit width in the homogeneous z3 direction. The simi-
larity solution for the Reynolds shear stress wiuz in these
equations must be consistent with the solutions for the
two-point velocity correlations wiu,.

It is hypothesized that the equations for the two-point
velocity correlation have self-similar solutions that are
the product of a scale that depends on the position of the
two points downstream of the jet exit and a similarity
function that depends only on the separation distance
between the points. Clearly, the similarity function can
not depend on the separation between the two points in
physical variables 1 — z} because the length scale of the
motions in the streamwise direction are growing as the
flow evolves downstream. Thus, the motions that should
be self-similar have different characteristic length scales
x1 — ) at different downstream positions.

Although it is not shown rigorously here, this decomposi-
tion can be accomplished by normalizing the separation

distances in the streamwise direction, x; — x7, by the
local length scale of the flow; i.e.,
d:L‘l dml
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Thus, the new coordinate for the streamwise direction is
given by & = In(z1/2?). The similarity scales are then
written as a function of the average downstream location
of the two points in this transformed system,; i.e.,

1
§=56E+¢) (7)
It is straightforward to show that the velocity and length
scale at the downstream distance £ can be written as
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Thus, the similarity scales at € are related to the length
and velocity scales at the two points. The self-similar
functions are then a function of the separation distance
between the points in this coordinate system given by
v=¢-¢. (10)

Thus, it is proposed that the governing equations for the
two-point correlations have self-similar solutions of the
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where 7, 7, and ¢ are similarity variables given by
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Here, * indicates any dependence on the jet’s initial con-
dition.

n=2/0(e*

The governing equations have self-similar solutions of the
proposed form if all of the terms in the equation have
the same & dependence. In this case all the terms in
the equation decay at the same rate indicating that the
different energy transfer processes in the flow are evolving
in an equilibrium manner. It is straightforward to show
this condition is satisfied if
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Q™ (€) & Us(e)? = Us(a1)Us (), (19)
TF (€) o Us(ef)?, (20)

and similar constraints are satisfied for the other mo-
ments.

Physically, the first constraint implies that the character-
istic length scales of the motions in all directions grow at
the same rate when the structures are evolving in equi-
librium manner. The growth of the structures in the
lateral direction should be considered when designing
either physical or numerical experiments to ensure the
development of the structures are not affected by finite
boundaries, including when boundary condition recycling
is used in numerical simulations where the exit flow is
rescaled and used for the entrance boundary conditions.

Pressure Field

The pressure at any point in an incompressible flow is a
measure of events at all other locations so that the two-
point pressure velocity correlation is a highly non-local
term. The two-point pressure velocity correlation at any
point can be written as[7]
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With some effort it can be shown this equation can be
used to develop an equation for the similarity solution
7r]1 (v,m,1, ¢, *) that only depends on similarity variables.
This may not seem surprising since the integral equation
for the pressure-velocity correlation can be developed di-
rectly from the equation for the two-point velocity cor-
relation. This results emphasizes, however, that the en-
ergy transfer processes at each location in the flow are in
equilibrium with the processes at all other locations in
the flow. It should be noted that the integral equation
was developed assuming that the flow was evolving in
an infinite environment. This assumption is appropriate
because the self-similar solutions outlined here represent
at most a asymptotic state for a plane jet in an infinite
environment.

Small-Scale Motions

Following the approach outlined by Kolomogorov, the
evolution of the small-scale motions is examined using
the second-order structure function. It can be shown
that the first order equation for this structure function
in the plane jet is given by
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where duo, = (ua — u)), To is the separation between

the two points, and Z. is the central location of the two
points. The production terms in this equation are ne-
glected since they should be small relative to the dissipa-
tion terms. Physically, the dissipation and pressure strain
terms represent the energy transfer from the large-scale
motions to the small-scale motions. It follows from the
analysis of the large-scale motions and the single-point
equations that
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which is proportional to u*/§ in this flow since the growth
rate is constant.

It is hypothesized that the equation for the structure
functions have self-similar solutions given by
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where
7] = 7;—31, and 7y = 7;—32, and 73 = Ql"—:’ (27)

It is straightforward to show that these equations have
self-similar solution of the form proposed if
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These scales are consistent with the scales develop by
Kolomogorov for the second- and third-order structure
functions; i.e.,

B*? o« u} (30)
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and
TF o uj (31)
where ux = (ve)'/* and I, = (v%/€)*/*. The solution

for the small-scale motions are also compatible with the
solutions for the large-scale motions because the scales
for the small-scale motions are not independent of the
large-scale motions. Instead they determine by the en-
ergy transfer from the large-scale motions.

Dependence on Initial Conditions

It is clear from the previous analysis that the hypothesis
that the large-scale motions in the far field of the plane
jet evolve in an equilibrium or self-similar manner is con-
sistent with the governing equations. This analysis can
also be used to examine if there is a single universal set of
large-scale structures. It is straightforward to show that
the € dependence can be eliminated from all of the terms
in the governing equations yielding governing equations
for the self-similar solutions that only depend on similar-
ity variables. There is, however, no choice for the similar-
ity scales that will eliminate the growth rate parameter
dé/dz: from all of the terms in these equations. Thus,
the solutions for the two-point velocity correlation and
the large-scale structures occurring in the flow depend
on the growth rate of the jet.

The proposition that there is an universal solution is nor-
mally supported by noting that the similarity solutions
are only formally valid for virtual sources and that these
sources only have a single invariant parameter the mo-
mentum flux M, in the infinite Reynolds number limit.
George [4, 5] argued that this would not necessarily hold
true for flows originating from finite sources because they
could have a range of invariants. However, if the flows
from finite sources asymptotically approach self-similar
or equilibrium solutions that are only valid for a virtual
source then the solutions for these finite sources must
take on the characteristics of the solutions for the vir-
tual source. Thus, the additional invariants for the fi-
nite sources only determine how the flow approaches the
self-similar solution for a virtual source or effectively the
non-equilibrium character of the flow.

The error in the argument that the flows have an univer-
sal solution is the implicit assumption that the virtual
source for turbulent self-similar flows are a steady source
characterized only by its momentum flux M,. Although
a steady virtual source is appropriate for laminar flows,
it is not for turbulent flows because the flow would have
to undergo transition at some point downstream of the
source. Thus, the self-similar solution for a turbulent
flow could not describe the flow over its entire evolution.
The virtual source must be unsteady with the appropri-
ate turbulence intensity, frequency spectra, probability
density function that are solutions to the equations for
a given growth rate. It would require an infinite num-
ber of invariants to fully characterize these sources and
there should be an infinite number of different unsteady
sources.

Representation of the Large-Scale Structures

The large-scale structures in turbulent flows can be char-
acterized using a number of techniques including Lum-
ley’s Proper Orthogonal Decomposition [8]. In this ap-
proach the flow is characterize using functions that opti-
mally represent the energy in the turbulent flow. The op-
timal functions in the homogeneous directions are Fourier
modes and these directions can be transformed from the



problem. The functions in non-homogeneous directions
are solution to the integral eigenvalue problem given by

/Ri,f('a i (d" = Ai(:). (32)
The functions for semi-infinite non-homogeneous direc-
tions, such as the mean flow direction in the plane jet, can
be solved using this approach if the integral is bounded.

The optimal functions for the far field of the plane jet
can be deduced from the similarity solutions for the two-
point velocity correlation tensor. It was shown here
that the similarity solutions for these correlations are
only a function of the separation distances in the trans-
formed streamwise direction. Thus, POD functions for
this transformed direction are Fourier modes. The POD
functions for the far field of the plane jet are thus given
by
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where F, ;j is the Fourier transform of the similarity solu-
tion for the two-point velocity correlation in the lateral
direction and the transformed streamwise direction; i.e.,
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There is not an equivalent definition for the spatial spec-
trum in physical variables.

The two-point velocity correlation in the mean flow di-
rection is often not measured. Instead, the frequency
spectrum is normally measured at a single downstream
location. It can be shown that the two-point two-time
correlation has a self-similar solution of the form
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where 7 =t —t' and 7 = 7/(6/Us). It follows that the
Fourier transform of this correlation; i.e.,
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can be written as
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where f = f/(Us/d) and S; ; has an definition analogous
to Si; except in similarity variables.

The POD modes in the jet in self-similar variables are
solutions to the integral eigenvalue problem given by

/ Sos(n B, YO, PR dr = 3di(). (38)

These self-similar POD modes can be related the POD
modes in physical variables; i.e.,
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by scaling relationships given by
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Gordeyev and Thomas[6] used equivalent scaling to show
that the POD modes in the plane jet are self-similar.

(40)

Conclusion

It was shown that the governing equations for the two-
point velocity correlation tensor have self-similar solu-
tions in the far field of the plane jet indicating the large-
scale structures in this flow are evolving in an equilib-
rium manner. This result can be used to show that the
orthogonal function determined using Lumley’s POD are
self-similar and the functions in the transformed mean
flow direction are Fourier modes.
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