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Abstract

The stability of the flow generated by a cylinder oscillat-
ing in quiescent fluid is investigated using direct numer-
ical simulation and Floquet analysis. This study deter-
mines transitions between flow regimes as functions of the
dimensionless oscillation amplitude (Keulegan-Carpenter
number, KC) and frequency (Stokes number, β). At low
values of KC and β the flow is two-dimensional and has
a reflection symmetry about the axis of oscillation. In-
creasing KC or β causes either of two distinct transitions
to three-dimensional flow. The two transitions are either
a breakage in the reflection symmetry accompanied by a
three-dimensional transition or a transition to three-di-
mensional flow where the spanwise average maintains the
original symmetry. The interaction of these two transi-
tions results in a large number of complex vortex shed-
ding patterns which were visualised in the experimental
studies of Tatsuno & Bearman [5]. Accurate locations
of the transitions and the variation of the three-dimen-
sional critical wavelength as a function of KC and β are
presented.

Introduction

Oscillatory motion of a circular cylinder normal to its
axis in quiescent fluid generates a streaming motion of
the fluid. In the case of an infinitely long cylinder, two
dimensionless control parameters determine the state of
the flow. These are the Keulegan–Carpenter number
KC = 2πa/D and the Stokes number β = fD2/ν, where
a is the amplitude of motion, D is the cylinder diameter
and f is the frequency of oscillation. A Reynolds number
can be defined as Re = βKC.

Several well-defined and fascinating two- and three-di-
mensional structures have been shown to occur in this
flow. Honji [3] used flow visualisation to show that the
appearance of streaks that alternated along the length
of the cylinder axis was evidence of a three-dimension-
al spanwise instability. Tatsuno & Bearman [5] further
extended this work and produced a control-space map,
classifying the flows into eight separate flow regimes each
with a characteristic two- and three-dimensional flow
structure. Numerical simulations of these phenomena to
date have only examined the two-dimensional transition
that occurs for low KC and β values. Iliadis & Anag-
nostopoulos [4] used a finite element method to locate
the boundary between symmetric and asymmetric two-
dimensional flow.

The characteristics of the flow regimes defined by [5] can
be described in terms of their symmetry properties. At
the boundaries between these regimes a transition in the
symmetry properties occurs. At very low values of KC
and β the flow resulting from a cylinder oscillating in the
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al (y) axis has the following symmetry properties:

u(x, y, z, t) = −u(−x, y, z, t) (1a)

v(x, y, z, t) = v(−x, y, z, t) (1b)

u(x, y, z, t) = u(x,−y, z, t + T/2) (2a)

v(x, y, z, t) = −v(x,−y, t + T/2) (2b)

u(x, y, z, t) = u(x, y, z, t + T ) (3)

u(x, y, z, t) = u(x, y, z + Z, t) (4)

re u = (u, v, w), T is the period of oscillation and
an arbitrary translation along the z-axis. Reflec-
symmetry about the y-axis is represented by (1),
(2) represents a symmetry about the x-axis which
same as that observed about the wake centreline for
ármán vortex shedding. Equation (3) results from
eriodic nature of the oscillation and (4) represents
panwise (z-axis) translation symmetry.

purpose of this study is to apply a combination of
t numerical simulation and Floquet stability analy-
] to determine the locations of the two- and three-
nsional transitions and accurately quantify the crit-
avelengths at which three-dimensional transitions
.

utational Methods

irect numerical simulations (DNS) presented in this
r employed a spectral element spatial discretisation
ve the two-dimensional (2D) incompressible Navier–
s equations in an accelerating reference frame at-
d to the cylinder [2]. The three-dimensional (3D)
ations utilised Fourier expansions along the axis of
ylinder; this provides a domain that is periodic in
panwise direction.

stability of the two-dimensional time-periodic solu-
found using DNS is obtained via Floquet stabil-

nalysis. This method determines the stability of a
imensional time-periodic base flow to infinitesimal
rbances in either two or three dimensions. In the
described here this is achieved using the linearised
r–Stokes equations as a subroutine to an Arnoldi-
od eigensystem solver to extract the leading eigen-
[6]. The linearised Navier–Stokes equations are:

u′

t
= −u′ · ∇U − U · ∇u′ − 1

ρ
∇p′ +

1

Re
∇2u′ (5)

∇ · u′ = 0

e U (x, y, t) is the 2D flow of period T whose stability
ght [1]. u′(x, y, z, t) and p′(x, y, z, t) are the pertur-
ns to the velocity and pressure. The 2D periodic
flow U is reconstructed using Fourier interpolation



Figure 1: Spectral element mesh used for computations

(a) Mesh Size 40 × 40 60 × 60 80 × 80

Ĉf 3.78341 3.78210 3.78045

(b) p 6 8 10

Ĉf 3.78420 3.78341 3.78392

Table 1: Convergence results for peak coefficients of force
at (a) different mesh sizes at p = 8, (b) different inter-
polant orders with a 40 × 40 mesh. p is the order of
the tensor-product interpolant function employed within
each spectral element.

from a sequence of 32 field dumps, obtained via DNS,
equally spaced in time over one period.

The breakage of the 2D reflection symmetry of the flow
was determined by taking an integral of the product of
the velocity component normal to the axis of oscillation
multiplied by the distance from the axis over the compu-
tational domain Ω:

S =

∫
|x|u(x, y, t) dΩ (6)

A significant deviation from zero was taken to indicate
a transition. The 2D computations employed the DNS
code.

In all the results described here, solutions were obtained
in a square domain of size 40D × 40D with an inter-
polant order of 8, using the 164-element mesh shown in
figure 1. The outer mesh boundary conditions are set to
the prescribed velocity of the mesh. Convergence tests
for the mesh size and order of the interpolants are shown
in table 1 for control values of KC = 2.5, β = 100.0.

Two-Dimensional Symmetry-Breaking

Here we examine the breaking of the 2D reflection sym-
metry about the oscillation axis using 2D DNS. A tran-
sition from the streaming flow along the cylinder axis
occurs as the parameters KC and β are increased [3, 5].
The initial state has symmetries about both the x and
y-axes, is periodic in time and is two-dimensional as de-
scribed by (1–4). Figure 2 shows the vorticity contours
for this symmetrical state. Two possible transitions were
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e 2: Close up of vorticity contours for the flow pro-
by a cylinder in vertical oscillation. Also shown is

eak-to-peak amplitude of oscillation. At KC = 3.5
= 100.0 the vorticity contours exhibit reflection

etry about the oscillation axis.

to occur as the controlling parameters were in-
ed. The first was a transition from the state of fig-
to that shown in figure 3. In this case the reflection
etry, (1), has been broken and the induced flow no
r streams along the oscillation axis but makes an an-
the oscillation direction. However the flow retains

emaining symmetry properties (2–4).

e 3: Close up of vorticity contours for the flow pro-
by a cylinder in vertical oscillation. Also shown is

eak-to-peak amplitude of oscillation. At KC = 6.0
= 22.5 the reflection symmetry seen in figure 2 has

broken.

econd transition was from the initial state of figure 2
at shown in figure 4. In this case, both the reflection
etry and the periodic symmetry about the x-axis
been broken, as described by (1–3). The direction
w convection switches chaotically from either side of
ertical axis so that vorticity contours such as those
in figure 4 occur. However the initial stages of the
ations resembled the flow in figure 3 as found by
no & Bearman [5] before becoming chaotic.

ge number of simulations utilising the measure of
etry from (6) were used to determine the boundary

e (KC, β) control space between the symmetrical
symmetrical flows. The results of figure 5 show the
ion of this transition. The transition to the state
n in figure 3 occurs in the upper branch for low
d high KC values while the transition to the ape-

state of figure 4 occurs for the branch with low



Figure 4: Close up of vorticity contours for the flow pro-
duced by a cylinder in vertical oscillation. Also shown is
the peak-to-peak amplitude of oscillation. At KC = 4.0
and β = 100.0 the two-dimensional symmetry properties
exhibited in figure 2 have been lost.

KC values. These are in excellent agreement with exist-
ing experimental results [5] but differ slightly from the
numerical results [4]. The difference could possibly be
attributed to the smaller domain (20D× 20− 40D) or to
the different technique (finite element method) employed
in obtaining those results.

Figure 5: Results for the first 2D transition in the sym-
metry characteristics of the flow as the controlling param-
eters are increased. Also shown is the regime boundary
for 2D transition of Tatsuno & Bearman [5] and of Iliadis
& Anagnostopoulos [4].

Three-Dimensional Symmetry-Breaking

In this section we examine the onset of three-dimension-
ality which is the breakage of the spanwise symmetry
property (4). Determination of the transition location
was achieved using Floquet analysis. Figure 6 shows an
example where the critical wavenumber is determined
as a function of β for KC = π. In this instance the
transition to three-dimensionality occurred at β = 57.5,
KC = π for a critical wavenumber k = 2πD/λ of 4.5.
Figure 7 shows the vorticity isosurfaces of the dominant
mode at KC = π. This compares favorably with the
vorticity isosurfaces from three-dimensional DNS run us-
ing the matching axial periodic length of 1.40D, which is
shown in figure 8. The differences result mainly from the
presence of nonlinear advection terms in the full Navier–
Stokes equations, as opposed to their linearised equiva-
lents in (5). For transition at low values of β, the base
flow had broken the reflection symmetry property before
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e 6: Floquet multiplier µ dependence on spanwise
number k at the given β values for KC = π. Values
reater than 1 indicate the growth of a 3D instability.

mode became unstable. Figures 9 and 10 show a
al Floquet mode for this region, at KC = 2π and
8.1 with the corresponding 3D DNS solution.

λ

e 7: Vorticity isosurfaces of the critical Floquet
at KC = π, for the component of vorticity aligned

cylinder translation. Four spanwise-periodic repeti-
of wavelength λ are shown.

e 8: Vorticity isosurfaces generated by three-dimen-
l DNS at KC = π. Four periodic repetitions are
n.

location of the transition to three-dimensionality is
n in figure 11. The results closely match the results
tsuno & Bearman [5]. The region in the mid-section
curve is devoid of points because the 2D base flow
periodic in this region and this breaks an essen-
riterion for the use of Floquet analysis. The criti-
avenumbers k at the onset of three-dimensionality,
n in figure 12, quite clearly have two distinct regions

reflect the different 2D base flows at the point of
ition.



Figure 9: Vorticity isosurfaces of the critical Floquet
mode at KC = 2π. Four periodic repetitions are shown.

Figure 10: Vorticity isosurfaces generated by the non-
linear Navier–Stokes solver at KC = 2π. Four periodic
repetitions are shown.

Figure 11: Three-dimensional transition curve denoting
the onset of instability. Floquet analysis results and the
experimental regime boundary for 3D transition from
Tatsuno & Bearman [5] are shown.

Combined Results

Curves representing two- and three-dimensional transi-
tion from figures 5 and 11 are overlaid in figure 13 along
with the results of Tatsuno & Bearman [5]. Our numeri-
cal results clearly match quite closely their experimental
results. It is interesting to note that a necessary precon-
dition for 3D instability in the low β, high KC area was
a breakage in the reflection symmetry property of the 2D
base flow as shown in figure 3.

Conclusions

It has been shown that the transitions in the two-dimen-
sional state and the onset of three-dimensional instabil-
ities of a sinusoidally oscillating circular cylinder can be
accurately determined using a combination of 2D DNS
and Floquet analysis. The results obtained closely match
experimental [5] and numerical [4] results found by other
researchers.
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e 12: Variation of the critical wavenumber with KC
nsition. The two different transitions that occur are
y shown as two different sets of wavenumbers.

e 13: Transition results for both two and three-
nsional cases. Also shown are the corresponding
e boundaries of Tatsuno & Bearman [5].
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