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Abstract 
In this paper, the flow of an Oldroyd-B fluid past an array of  
circular cylinders in a channel is simulated by a parallelized 
pressure-based Finite Volume Method (FVM) using fine 
unstructured meshes. The numerical method is using the Discrete 
Elastic Viscous Split Stress vorticity (DEVSS-omega) 
formulation and the SIMPLER iteration algorithm. The spacing 
parameter between cylinders is selected L=6. The results show 
that the shear motion in the gap between the wall and the 
cylinder dominates the flow at high Deborah number. Closing of 
cylinders will alter the behaviour of wall shear layers and delay 
the occurrence of instability. 
 
Introduction 
Viscoelastic flows past an array of cylinders have been obtained 
much attention in the last decade due to its implicative 
applications in flows through porous media [3,8,10,11,14-16]. 
Experiments showed that this type of flows exhibits instability at 
high Deborah number [3,8,11]. Linear stability analysis also 
revealed the features of instability for various parameters 
[16,18]. Comparing to the flows past a single cylinder in a 
channel, it is well known that the extension in the wake of 
cylinders of array is reduced. How the shear behavior is changed 
is not clear. Experiments found that the critical Deborah number 
for instability increases with closing of the cylinders. Extension 
in the wake has been nominated as the mechanism for the 
instability initiation [2,11,12]. However, Dou and Phan-Thien [5] 
found that the mechanism for instability of viscoleastic flows 
past a single cylinder in a channel is generated by the strong 
shear on the cylinder rather than the elongation in the wake. The 
mechanism of instability in the case of array of cylinders needs 
to be carefully examined because of its importance in 
applications [6].  

 
 

Fig.1 Sketch of the flow geometry  
 

In this study, the flow of an Oldroyd-B fluid past an array of 
cylinders in a channel with geometry h/R=2 (Figure 1) is 
simulated using a parallelized unstructured FVM method, with 
fine meshes. The Discrete Elastic Viscous Split Stress (DEVSS) 
formulation is employed in the implementation of the SIMPLER 
pressure-velocity coupling method. The computing results are 
compared with those of single cylinder. The results show that the 
velocity inflection on the cylinder is delayed with the cylinder 
closing. This should contributes to the increasing of the critical 
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rah number for instability occurrence. These results agrees 
itatively with the experimental behaviour reported in 
ture.  

erning Equations 
equations of mass and momentum conservation, and the 
titutive equation for the Oldroyd-B model are [1,7]: 
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e  is the fluid density, t the time, u the velocity vector, p 
hydrodynamic pressure, η the solvent viscosity, 

 the rate-of-strain tensor, η a ``polymer-

ributed'' viscosity,  the (constant) relaxation time, and 
e ``extra'' stress tensor, not necessarily traceless. By 
ing as the retardation ratio, we have 

 For the UCM model,  and η = . For 
Newtonian fluid,  and η = . For the Oldroyd-B 
  and η . The rheological behaviours of 
 constitutive models have been discussed in (Bird et al [1], 

gol and Phan-Thien [7]). 
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tabilize the solution, the identity  

)(2 uu •∇∇+×−∇=∇ ω                (4) 

mployed, where the vorticity  With this, the 
entum equations Eq.(2) are re-written as  
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             (5) 
e the value of ε  can be adapted to the stress level. In this 
r, we use a constant value of ε = , and this 
ulation is named as DEVSS-ω  scheme (Dou and Phan-
n [4]).  

0, βηε

he dependent variables in the governing equations (3) and 
an be written in the form of the general transport equations 

cp SSSu
t

+==∇Γ−Λ•∇+
∂
Λ∂

φφφ
φ

φ)()(         (6) 



where  is one of the dependent variables, denotes the 
diffusivity of φ ,  is the source term, and  is the 

``flux'' of the variable φ . The source term is arbitrarily split in 
the manner shown on the right side of equation. 
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Numerical Method 
Discretization of Equations  
An unstructured FVM using pressure correction with triangular 
meshes (control volume-based finite-element method) is used to 
discretize the governing equations with a co-located mesh 
arrangement. The SIMPLER (Semi-Implicit Method for 
Pressure-Linked Equations Revised) algorithm is employed to 
couple the solution of these equations. Triangular meshes are 
generated in the computing domain (unstructured triangles of 
irregular size and shape). All the dependent variables such as 
velocities and pressure as well as stresses are stored at the 
vertices of the triangular elements. The velocities and stresses are 
interpolated over the elements using the same shape function, 
and the pressure and pressure correction are linearly interpolated 
over the elements. The formation of a typical control volume is 
shown in Fig.2, where the current node is denoted by P which is 
shared by six triangular elements ploted by the thick solid lines, 
and the surrounding nodes by A,B,C,D,E,F.  The control volume 
for node P is constructed by connecting the centroids to the 
midpoints of the sides of the triangular elements sharing grid 
point P, forming a polygonal control volume( 1-2-3-4-5-6-1). 
 

  
Fig.2 Control volume surrounding a computing node P.   
 
Equation (6) (for velocities and stresses) is discretized by using 
the same interpolation function as in Prakash and Patankar [13]). 
A set of local coordinates (X,Y) is defined in the element, as 
shown in Fig. 3. The origin of this coordinate system (X,Y) is 
located at the centroid O, and the X axis is aligned with the 
element-average velocity vector U , . 

Here, are assumed to be uniform over any triangular 
element, and the convection-diffusion flux is calculated by 
assuming that over any element φ  varies exponentially in the 
direction of the average velocity vector and linearly in the 
normal direction. The shape function is  

avg U U U Uavg = + +( /1 2 3 3
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where A,B and C are the coefficients in the interpolation 
formula. 
 
The discretization of equation (6) is carried out using Eq.(7) in 
all the elements, then integration is performed over a control 
volume surrounding a node, the final discretization equation for 
the dependent variable φ  can be expressed as 
 

a ap p nb nbφ φ= ∑ + b            (8) 
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b S V a a S Vc p nb p= = ∑ −∆ ∆,          (9)  
, the summation is to be taken over all the neighbouring 
s, aj are the combined convection-diffusion coefficients and 
ludes all the terms calculated explicitly, including the source 
s, and nb denotes the neighbouring nodes. In addition, the 
ce term is arbitrarily split into a combination of a constant 
, and a linear term in φ ,  ,VSSS cpc ∆−=

 

Fig.3 Local coordinates with a triangle element.  

discretization equations for pressure and pressure correction 
btained by applying the mass conversation principle over 
urfaces of the control volume of a node and utilizing the 
entum equations. The equal-order method proposed by 
ash and Patankar [13] is used in this study. 

f these algebraic equations are solved sequentially by using 
IMPLER iteration procedure with the Gauss-Seidel point 
r. An under-relaxation technique is used to deal with the 

linearities of the equations. To improve the numerical 
lity of the constitutive equations, equal stress diffusion terms 
introduced on both sides of equation, with a small 
nsionless diffusivity of  (kept as a fraction of the De 
ber, in this study α =0.02De was used); the terms on the left 
are treated as the diffusion terms, and terms on the right side 
ribute toward the source terms. 

α

ndary Conditions  
computing domain is shown in Fig. 1, which is taken a unit 
around a cylinder. Periodic conditions for velocities, stresses 
pressure are exerted on the inlet and outlet. No-slip 
itions are imposed for u, v on solid surfaces. The boundary 
itions on the solid surface for τ  are given by 
tical solutions such as at the channel walls and the cylinder 
ce.   

yyxyxx and ττ,

llel Algorithm 
parallel algorithm is detailed in (Dou and Phan-Thien [4]). 
parallelization of the computations is implemented by means 
 domain decomposition (DD) technique, using the master-
 communication model. In brief, the program was run on a 

ibuted computing environment (called a workstation farm) 
isting of 28 DEC Alpha 500/256. Communication is through 
t ethernet of 100 MBits per second. The message passing is 
orted by PVM software libraries version 3.4.1 from Oak 
e National Laboratory. 

ults and Discussion 
computation domain is shown in Fig.1; here, the 

nsionless space parameter between the cylinders is L=l/R=6. 
width of the passage is 2h=4R. An Oldroyd-B fluid with the 
sity ratio =0.41 is used for the flow simulation. The 
olds and the Deborah numbers are defined as: 

 and , where U is the average velocity 

β

ηρ /UR RUDe /λ=



in the channel. The inertia terms are omitted in the present study 
(Re=0). Only steady flow is considered. 
 

Mesh Nnode Nelem Rr /∆  sr ∆∆ /  DOF 
M2 16546 32350 0.0048 0.30 115822 
M3 17786 34760 0.0092 0.70 124502 

   
Table 1. Meshes used for the computation.  
 

 
Fig.4  Mesh M2 used for this research. 

 
Mixed meshes (structured and unstructured) are used for this 
study. Structured meshes are generated around the cylinder and 
at inlet and outlet, and unstructured meshes are generated 
elsewhere. Unstructured triangular meshes are adapted to the 
wake region and between the channel and the cylinder. Two 
meshes are presented in this paper. Fig. 4 shows the global view 
of the mesh M2 used in this study. Their key features are in 
Table 1, where Nnode and Nelem express the number of nodes 
and elements respectively,  is the typical mesh size, 
defined as the ratio of the mesh size in radial direction on the 
cylinder surface to the cylinder radius,  is the aspect ratio 
of meshes near the cylinder, and DOF stands for the degrees of 
freedom. High aspect ratio meshes are used near the cylinder for 
M2, while almost equal-lateral triangles are employed near the 
cylinder for M3. Mesh M2 is the same as the mesh M2 in [5] for 
-2<x<2 used for a single cylinder.  

Rr /∆

sR ∆∆ /

 
Mesh                           M2    M3 
De Dec De1 De2 Demax 
single 0.6 1.10 1.60 0.6 
Array 0.7 1.20 1.80 0.7 

   
Table 2 Results for M2 and M3 and compared with [5]. 

  
Fi.g.5 First normal stress difference at De=0.60 with M2.  
Table 2 shows the computing results for M2 and M3. Dec 
denotes the velocity inflection appearance at the top of cylinder; 
De1 denotes that the computing is completely convergent; De2 
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tes that the computation continues with oscillatory 
ergent history and finally breaking down. Demax is the 
imum De number calculated with M3, just indicates a 
ency of velocity inflection before divergence. This result 
ests that Dec (Demax for M3) is the true margin of 
bility at which a steady solution is to be breakdown.  M2 
d pass through this margin is due to the more stability of the 
meshes for the numerical process. Any steady simulation 
ts beyond Dec could not represent the physical flow of the 
. Therefore, it is no sense to pursue a high De number 
ion for steady flow above Dec. In other hand, this suggests 
numerical stability depends on the aspect ratio of meshes. 
 meshes introduce more approximation to the discretization, 
generate more numerical diffusion. This numerical diffusion 
d increase numerical stability and delay the beakdown of 
ions.  This result about the effect of aspect ratio of meshes is 
istent with the results of linear stability analysis [16]. 

 
Fi.g 6 Pressure at De=0.60 with M2. 

Fig.7 Velocity gradient near the cylinder at the plane x=0 in 
ap at De=0.6 with Mesh M2. 
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numerical results for the array of cylinders in Table 2 show 
the maximum Deborah number can be extended to a higher 
e, comparing to the single cylinder case. This is agreement 
 the experiments that the critical Deborah number for 
bility increases with the closing of the cylinders [12]. Liu 
2] think that the mechanism of instability is the extension in 
ake, and cylinder approaching reduces the elongation in the 
. However, the numerical difficulty for De<1.0 is in the 

r region on the top of cylinder, not in the wake for a single 
der [5]. For De>1, the numerical difficulty is in the wake 
n. For reduced L, the numerical difficulty is more probably 
e shear region for De<1. Therefore, the statement in the 
ture for the mechanism of instability is questionable.  

 and Fig.6 show the first normal stress difference and 
ure respectively at De=0.60 with M2. Fig.7 shows the 

city gradient at the plane x=0 in the gap. A velocity 
ction near the cylinder is clearly seen for both cases. Dou 



and Phan-Thien [5] think that the velocity inflection in the shear 
layer is genereated by the cross-streamline pressure gradient 
resulted by normal stress. This will lead to the instability of shear 
flow and convected to the downsteam. The instability for this 
flow is caused by shear instability, not wake instability. Byars'[2] 
experiments showed that the instability exists in the shear region 
at shoulder  of cylinder upstream the wake at high De. From 
Fig.7, it can seen that cylinder approaching delayed the velocity 
inflection. This should contributes to the stability extension to 
high De for reduces L.   
 
Sureskumar [16] uses a linear stability analysis to explore the 
instability of Oldroyd-B fluid past a linear array of cylinders. 
They showed that the critical De number for instability increases 
with the increasing of the dimensionless parameter L of cylinder 
spacing. The results are: For L=2.5, Dec=0.64; For L=3, 
Dec=0.73; For L=3.5, Dec=0.86; For L=6, Dec=1.50 
extrapolated; For L=30, Dec=7.70 extrapolated (This 
extrapolation is incorrect because there is no interaction between 
cylinders when L exceed a value). This is contradictive to the 
experiments [Liu, 12] which indicated that the critical De 
number for instability decreases with the increasing of the 
dimensionless parameter L. Therefore, the results of linear 
stability analysis is not reliable, although it can provide with 
some useful information sometimes. The authors think that the 
conflicting tendency is due to the Oldroyd-B is not suitable. 
Smith et al [14] improved the results in [16] using mesh 
refinement, but still lack of persuading.   
 
Our simulation results show that with the reducing L (1) the 
stress shear layer on the cylinder becomes thinner; (2) the value 
of normal stress τ  within the layer becomes low; (3) the 
velocity inflection delays and is nearer the cylinder. These 
phenomena can be explained as follow. With the approaching of 
cylinders, the incoming flow to the cylinder is a no-recovered 
wake that is different from the full developed flow. The velocity 
gradient and normal stress on the cylinder depend on this 
incoming flow. In particular, the normal stress is history-
dependent, not determined by the local velocity gradients only. 
On the other side, the shear layers on the channel walls opposite 
to the neighboring cylinders interact each other. This also has 
important influence on the stresses and pressure distribution on 
the walls. The low stress magnitude in the stress shear layer on 
the cylinder is the direct reason for delaying the velocity 
inflection and increases the Dec number. This will make the 
distortion of shear layer on the cylinder relaxed for closing 
space. Thus, this will delays the occurrence of velocity inflection 
on the cylinder and increases the Dec for instability. This 
simultaneously delays the disturbance of pressure in the shear 
layer and reduces the secondary flow near the cylinder surface. 
Therefore, the flow instability is dominated by the shear flow on 
the cylinder and the channel wall, not by wake elongation. This 
study supported the previous founding for single cylinder that the 
instability is due to an inflection velocity profile, near the 
cylinder, generated by normal stress on the cylinder surface at 
high De number, which can be captured with fine meshes only. 
Inflection velocity profile leads to flow instability according to 
Rayleigh theorem, and consequently allows to the convection of 
vortices within the shear layer downstream of the wake and 
results in the flow pulsation in the spanwise direction. Therefore, 
the origin of the instability is in the shear layer on the cylinder 
and not in the wake itself.  

xx

 
Conclusions 
A detailed simulation is performed using mixed meshes for the 
flow of an Oldroyd-B fluid past an array of cylinder in a channel 
with h/R=2. The parallel computation was done in a distributed 
computing environment. This report focuses on the 
understanding of the physical problems at high De number. 
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erical results obtained by the unstructured FVM algorithm 
DEVSS-w formulation are compared qualitively with 

ished results. The main conclusions of this study are as 
ws: 

numerical process stability is related to the mesh aspect 
. This is consistent with the FEM linear instability analysis 
 in which it was shown that the rate of unstable perturbation 
ases with mesh aspect ratio. 

instability mechanism of viscoelastic flows past an array of 
ders is similar with a single cylinder, is dominated by shear 
, i.e., the inflection in the velocity at a critical De number 
rding to Rayleigh theorem). The pressure distortion near the 
der due to the development of normal stress induces an 
ction in the velocity and leads to the flow instability. 
 
 the approaching of cylinders, the bahaviour of the shear 
 on the cylinder changes. This change delays the occurrence 
e velocity inflection on the cylinder and increases the Dec 
ber for instability.  
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