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Abstract

In this study we describe a theoretical asymptotic model for large
amplitude stationary inertial waves in an axially symmetric
swirling flow of an ideal fluid in a circular tube with variable
cross-section. Calculations are presented for the special, but
important case when the upstream flow is uniform and always
supercritical. We find that the breakdown of inertial waves in
divergent tubes is extremely sensitive to the variations of the
cross-section. The breakdown bubble is generally asymmetric
and it may  turn into the diverging tail, especially in a convergent
part of the tube. Possible relevance of the calculated structures to
the experimentally observed types of the breakdown is discussed.

 Introduction

     There have been numerous studies of inertial waves in
axisymmetric swirling flows in tubes, largely motivated by the
possible relationship between such waves and the phenomenon of
vortex breakdown [2,6]. This highly non-linear phenomenon
exhibits the extreme sensitivity to a wide range of external
influences, and to date there is no uniformly accepted model for
this phenomenon.  Main problem noticed in the early studies in
the straight tubes is the upstream influence leading to the
formation of the separation zone at the upstream boundary. One
way to resolve this difficulty is to induce the breakdown by a
local contraction of the tube, so that the separation zone is
observed in the lee past that contraction [1,4]. Another includes
introduction of specific inlet conditions preventing upstream
propagation of disturbances [9]. Sophisticated calculations
including the vortex shedding from the vane generator and a
careful modeling of the geometry of the experimental set up were
reported recently [8]. In all mentioned studies the specific
geometry of the tube was fixed and the influence of its variations
on the flow patterns was not examined. In this study we are going
to develop a theoretical model for the stationary patterns which
may contain breakdown (separation zones). We consider the
special, but important case when the upstream flow is nearly
uniform with the aim of emphasizing the effects associated with
the influence of the variation of the cross-section of the tube.  

 In the next section we will formulate the mathematical
model and describe the asymptotic development. Then, several
calculations will be presented for the case of a solid body
rotation. Finally, we speculate about the possible relevance of our
calculations to the experimentally observed features.       

           

Formulation

       We consider the axisymmetric, steady flow of an inviscid,

non-diffusive swirling fluid of constant density.   The  equation

for the stream function  ψ   is the Bragg-Hawthorne   
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 the axial and radial velocity components are given by
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he swirl velocity  w  is given by

                          )(ψCrw = .                 (3)
 that in contrast to [3] we here set the wave speed (c) to be
 as we wish to construct solutions, which are steady in the
ence frame of the topographic perturbation to the bounding

lar tube wall.  The boundary conditions are that 0=ψ  on

ube axis 0=r ,  and  ψ  = constant on the tube wall

)(xqa + ,  where )(xq  is the topographic perturbation. 

Next, as in [3] we introduce dimensionless variables, based

 typical axial velocity  0U   and the upstream tube radius  a.

,
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eforth we shall omit the prime superscripts.  Then, as in [3]
ill assume that the inflow axial velocity is nearly uniform,

he inflow angular velocity is likewise nearly uniform.  Thus,

  u → u∞ = 1 + κU(ξ), as x → −∞ ,         (5)

w∞

r
= Ω0 (1 + σΩ(ξ)), as x → −∞ ,       (6)

e,  
2r=ξ   and  κ ,σ   are small parameters.  It follows

we may write

         ψ = ξ + κ u( ˆ ξ ) d ˆ ξ + φ
0

ξ

∫ ,                        (7)

e φ  is thus the perturbed streamfunction relative to the

eam value of  ψ .  After some algebra, we find that 

          )(4 2 φφλξφφ ξξ Fxx =++ ,   

here   =λ | 02Ω |  and )(φF  is a nonlinear function of 



φ ,  given explicitly in [3] in terms of the known functions

)(ξU   and  )(ξΩ .  Here =λ
2
1 | 0Ω |  is the swirl number

which measures the ratio of the swirl velocity at the tube wall to
the axial velocity.  The boundary conditions at the tube axis and

wall are that 0=φ   at  0=r ,  and that

      ∫ +==+−+
ξ

ξξκξφ
1

)(1at0ˆ)ˆ(1 xhqrdU ,          (9)    

Here we have introduced another small parameter,  h,  to measure
the radial extent of the topographic wall perturbation.

        Then, again as in [3], we allow for the possibility that there
may be a recirculation zone located on the axis of the tube.  This
occurs when

                          0at01 ==+ ξφξ               (10)

which defines a critical wave amplitude.  For waves with larger
amplitudes, we suppose that there is a separation zone whose
boundary is given by 

                                      )(xr η=                              (11)

where 0=η  outside the domain +− << xxx  say.  Inside

the separation zone, the governing equation is again (1) but the

circulation function )(ψC   and the vorticity function  )(ψG
must be determined anew.  On the boundary (11) of the

separation zone,  0=ψ   as it is a streamline, and continuity of

pressure leads to continuity of  ξψ .

 Asymptotic development

      The x-domain is divided into two parts, an outer zone where

we seek solutions whose axial length scale is 
1−ε  where

10 <<< ε , and an inner zone )( +− << xxx   which

includes the separation zone and where the axial length scale is
1−β   where  2

1
εβ = . In the outer zone, we introduce the

long axial variable

                                        xX ε= ,                                      (12)

and then, as in [3], seek an asymptotic expansion of the form

           ,...),(),( )1(2)0( ++= ξφεξφφ XX        (13a)

                    ....)1(2)0( ++= λελλ                    (13b)

Here we assume that h,, σκ   are  )( 2εO ,  and so put

2ε̂κκ = ,  
2ˆεσσ =   and  

2ˆεhh = .  Note that here, in

contrast to [3], we expand the swirl number (i.e. λ
2
1 ) directly.

The analysis now proceeds as in [3], the only essential new
feature being the inclusion of the topographic perturbation in the
tube wall boundary condition.  Hence, at the lowest order, we get
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1 =λJ .                            (14c)

the lowest mode  83.3)0( =λ ,  and we shall consider

 this mode henceforth.  At the next order, a compatibility

ition is applied to the equation for  
)1(φ   which yields the

ired amplitude equation

0)(ˆ)( 21 =−++∆+ AJJqhAMAXX .    (15)

                                                                                                       

, the nonlinear function  )(AM   is identical to that given

[3] (with c(0)
 there set equal to zero), while here

)1()0(2 λλ .  Thus  )0(0 <>∆  corresponds to an

ase (decrease) in the swirl number respectively. The

tants  21, JJ   are defined by

        J1 = −
4λ(0)

J0 (λ(0) )
, J2 = −2λ(0)2

,       (16)

ote that  J1 ≈ 38.1 (>0)   and  J2 ≈ −29.4(<0) .
An important issue now arises, namely that in (2.15) it has

 implicitly assumed that  )(Xqq = ,  i.e.  the topography

s on the outer length scale.  Clearly, this is not necessarily
ase, and indeed it is also interesting in the present context to

e that the topography varies on the inner length scale, that

)(zq=   where  xz β=   and 2
1

εβ = ,  and is non-

only in the domain  )(0 TTT xzzz β=<< .

In the inner zone, the analysis again follows that of [3] very

ly.  Thus, we suppose that the inner length scale is 
1−β

e 2
1

εβ = , and that the size of the separation zone

) .  Hence we put

        xzzf βδη == and),( ,               (17)

e the domain of the inner zone is defined by

+<< zz ,  noting that  0)( =zf  outside this domain.

location of the inner zone boundary is determined by the

rion that at ±= zz , or equivalently, at ±= XX  where

±= zβ , the wave amplitude  A  reaches the critical value

where there is incipient flow reversal, that is (10) is satisfied.

g the leading order expression  
)0(φ   (14a) for  φ ,  we find

           



                                     
)0(

* /2 λ−=A ,                              (18)

and that, as already anticipated, the flow reversal occurs on the
tube axis.  Note that A* ≈ −0.52 < 0, and so waves with
separation zones are waves of “elevation”, i.e. the streamlines are
displaced in the direction of  r  increasing.  In the inner zone,

)(zA  is close to this critical amplitude, and so we put

                            )()( * zBAzA µ−= ,

(19)
where an optimal balance of small parameters requires that

εµ =  and δ = ε1 / 2
.  However, we find it convenient to

retain  µ   and  ε   as independent small parameters, albeit of

the same order, as the ratio measures the magnitude of the
separation zone vis-à-vis the magnitude of the outer length scale.
Proceeding as in [3] we find that  B  satisfies the equation

     0ˆ)( *
2

** =+−+∆+ qJhBAMABzz ν ,     (20a)

where
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Note that  J* ≈ 22.7 > 0 .  Also, the boundary of the
separation zone is given by

                                   f 2 =
2

λ(0 )

µ
ε

B .                              (21)

Here, we define the small parameter µ  as a measure of the

maximum size, mA , of the wave amplitude, that is

µ−= *AAm .  Thus, we must have  10 << B .  Then

the amplitude equation (2.20a) is to be solved subject to the
matching   conditions,

±=== zzBAB zX at,and0 µm .     (22)

Finally, the analysis inside the separation zone proceed as in [3],
and hence we can conclude that the separation zone is nearly
stagnant.

Specific case of the uniform flow.

In this section we consider the important special case when
the upstream inflow conditions are uniform axial and uniform
angular velocity. The radial component of the velocity is set to be

zero. Thus the functions )(ξU   and  )(ξΩ  in (2.5), (2.6) are

zero, and nonlinearity  function )(AM  in (2.15) and (2.20) is

zero. That is the only nonlinearity in the problem arises due to the
flow over the separation zone.  We shall examine the case

when 0,0 == xAA , and 0=q  for  0≤x . 

In the first set of calculations in the divergent tube (figure 1)

with the profile xxq 025.0055.0)( +−= , we observed

that the separation zone moves upstream and its size increases as
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 0Ω  increases ( ∆ increases ). Note that the separation

 in a diverging tube  has both the radial and the axial size
 even for the maximum amplitude contrary to the infinite

ration zone in an ideal fluid in a straight tube [3,5]. The
le part of the bubble of the maximum amplitude presented in
e1  is tilted and the back of the separation zone is steeper
its front, i.e. the separation zone is essentially asymmetric.

 is consistent with numerous observations of the laminar
down [2,6,7].

e 1.  Profiles of the separation zone in a diverging tube for different
s, ∆=−0.008 (corresponds to smaller swirl) for the small bubble, and
199 for the large bubble of nearly maximum possible amplitude.

In figure 2 we illustrate that to observe the onset of the
ation point at some fixed position, the swirl should be
ased as the angles of the divergence are sharpened.
itatively similar effect was observed by Sarpkaya [7],
ugh velocity profiles in the approaching vortex in his
riments differ significantly from the uniform flow examined
 

e 2.  Profiles of the separation zone occurring at the same position at
in  tubes with  different angles of divergence, ∆ and the  angle of
gence are –0.1233 and 1.189° for the small bubble; 0.0199 and
° for the large  bubble respectively.

It is pertinent to note that the flow is supercritical at the
ning of divergence for all presented ∆ as solutions of (15)

exponential functions there, but at some cross-section
ions turns to be subcritical. Leibovich discussed similar
vior in [6].  

In the case of diverging tube our calculations show that the
mlines significantly converge just several bubble diameters
stream of the back side of the separation zone. It may lead

stabilities in a newly formed jet-like vortex or even to the
t of another separation zone near the boundary of the tube.
hese instabilities may violate our initial assumption that the
 is axisymmetric, our model is not applicable far downstream
eparation zone. When the divergence occurs only at a finite
val, the convergence of the streamlines past the separation is
ively mild (see figure 3). In this figure the divergence mainly
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affect the flow before the stagnation occurs, thus separation zone
is fairly symmetric.   

 
             

                                              
Figure 3.  Profile of the tube and the corresponding flow pattern in the
tube with a finite interval of mild divergence. ∆=  –0.1025.

When the divergent section of the tube is followed by the interval
of convergence, we found that the separation zone may consist of
the bubble-like part, which finally joins the divergent tail. The
flow pattern for this case is shown in figure 4. Note that swirls in
the approaching vortex are the same in figures 3 and 4. The flow
structure changes entirely just due to the slight convergence of
the tube.  The shape of the separation zone analogous to that
presented in figure 4 was observed by Sarpkaya  [7] for the case
of turbulent regime in the divergent tube. A possible explanation
of this coincidence may be the following. For the turbulent
regimes studied by Sarpkaya [7], the turbulent boundary layer
develops much more rapidly than in the classical works on the
laminar breakdown [6]. Finally, in a certain cross-section, the
convergence of the duct due to the growing turbulent boundary
layer may compete and even prevail the actual divergence of the
tube thus effectively creating the profile of the confining
boundary with both of divergent (initial) and convergent sections
similar to that presented in figure 4. Sarpkaya [7] reported that
the bubble structure first rejoins the tail when the value of the
fluctuation velocity relative to the axial velocity in the
approaching vortex is 2.3%. Therefore, the tangent of the angle
of convergence due to the growing boundary layer is  of the order
of 0.023 which is close to the actual tangent 0.025 of the
divergence of the tube itself . 

Conclusions

      In this paper we presented a new asymptotic theory for the
inertial waves in swirling axisymmetric flows. Our model is set
to account the effects due to the separation zones appeared in a
flow. Calculations are presented for the special, but important
case when the upstream flow is uniform. We found that the
breakdown of inertial waves in divergent tubes is extremely
sensitive to the variations of the cross-section of the tube. The
breakdown bubble is generally asymmetric and it may turn into
the diverging tail, especially in a convergent part of the tube.
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e 4.  Profile of the tube and the corresponding flow pattern in the
with both divergent and convergent sections. ∆=  –0.1025 the same
 the flow shown in the previous figure.
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