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Abstract 
Interactions between turbulent waters and the atmosphere may 
lead to air-water mixing. This experimental study is focused on 
the flow down a staircase channel characterised by very-strong 
interfacial aeration and turbulence. Interfacial aeration is 
characterised by several types of air-water flow structures. The 
sizes of bubbles and droplets extend over several orders of 
magnitude, and a significant number of bubble clusters was 
observed. Velocity and turbulence intensity measurements 
suggest high levels of turbulence across the entire air-water flow, 
much higher than in classical monophase flow situations. 
Altogether the study provides a new understanding of the basic 
interfacial processes in aeration cascades. 
 
Introduction 
The interactions between flowing waters and the atmosphere 
may lead to strong air-water mixing and complex multiphase 
flow situations. Air-water flows have been studied only recently. 
Although early observations of 'white water' include Leonardo da 
Vinci, Wen Cheng Ming, and Katsushita Hokusai, the first 
successful experiments were those of R. Ehrenberger in Austria 
and later the works led by L.G. Straub in North-America. Since 
the 1960s, numerous researchers studied gas entrainment in 
liquid flows. Most studies focused on low void fractions (C < 
5%). Few research projects have been engaged in strongly-
turbulent flows associated with strong free-surface aeration 
(Wood 1991, Chanson 1997). 
 

 
 
Fig. 1 - Free-surface aeration down a stepped cascade : definition sketch 
 
In open channel flows, free-surface aeration is caused by 
turbulence fluctuations acting next to the air-water free surface. 
Through this interface, air is continuously trapped and released. 
Interfacial aeration involves both entrainment of air bubbles and 
formation of water droplets. The exact location of the interface 
becomes undetermined, and there are continuous exchanges of 
air-water and of momentum between water and atmosphere. The 
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ater mix consists of water surrounding air bubbles (bubbly 
, C < 30%), air surrounding water droplets (spray, C > 70%) 
an intermediate flow structure for 0.3 < C < 0.7 (Fig. 1). 
es and wavelets may propagate along the free surface. 

 

 

 – Turbulent flows down a stepped chute. Top : Transition flow (qw 
08 m2/s, h = 0.1 m, l = 0.35 m); detail of air-water flow structures 
probe in foreground, view from upstream . Bottom : Skimming flow 
 0.114 m2/s, h = 0.1 m, l = 0.25 m); flow from the left to the right 

ly turbulent flows are experienced down a staircase channel. 
 flows behave as a succession of free-falling nappes called 
e flow regime, and little aeration is observed (Rajaratnam 
, Chanson 1995). With increasing flow rates, a transition 
 regime occurs at intermediate discharges. A dominant flow 
re is the chaotic appearance with irregular droplet ejections 
 to reach heights of up to 3 to 5 times the step height. At 
r flow rates, the waters skim over the pseudo-bottom formed 
he step edges (skimming flow regime, Fig. 2 Bottom). 
se cavity recirculation is observed and the flow resistance is 
 drag predominantly. In transition and skimming flows, free-
ce aeration is very intense. 
the aim of this work to describe highly turbulent free-surface 
s, and to present new evidence leading to a better 
rstanding of the multiphase flow dynamics. The study 
ines cascading waters down a stepped chute (Fig. 1 and 2). 
structure of the air-water flows is described, and a new 
sis of the bubbly flow and spray is presented. 



 
Experimental Apparatus and Instrumentation 
Experiments were conducted at the University of Queensland in 
a 1-m wide stepped chute (Fig. 2). The test section consisted of a 
broad-crest followed by nine identical steps (h = 0.1 m) made of 
marine ply. Two chute slopes were investigated : α = 15.9º and 
21.8º (l = 0.35 & 0.25 m respectively). The flow rate was 
delivered by a pump controlled with an adjustable frequency AC 
motor drive, enabling an accurate discharge adjustment in a 
closed-circuit system. The discharge was  measured from the 
upstream head above crest with an accuracy of about 2%. Air-
water flow properties were measured using a double-tip probe (∅ 
= 0.025 mm). The probe sensors were aligned in the flow 
direction and excited by an air bubble detector (AS25240). The 
probe signal was scanned at 20 kHz per sensor for 20 seconds. 
The translation of the probe in the direction normal to the 
channel invert was controlled by a fine adjustment travelling 
mechanism connected to a MitutoyoTM digimatic scale unit. The 
error on the vertical position of the probe was less than 0.025 
mm. Flow visualisations were conducted with a digital video-
camera and high-speed still photographs (e.g. Fig. 2). 
Experimental investigations were conducted for flow rates 
ranging from 0.046 to 0.182 m3/s although the focus was on the 
highly aerated transition and skimming flows. Measurements 
were conducted at the outer step edges. Note that uniform 
equilibrium flow conditions were not achieved at the downstream 
end of the chute because the flume was relatively short. More 
details were given in Chanson and Toombes (2001). 
 
Advective Diffusion of Air Bubbles 
Downstream of the inception point of free-surface aeration, air 
and water are fully mixed, forming a homogeneous two-phase 
flow (Chanson 1997). The advective diffusion of air bubbles may 
be described by simple analytical models. In transition flows, the 
distributions of void fraction follow closely : 
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where y is distance measured normal to the pseudo-invert, Y90 is 
the characteristic distance where C = 90%, K' and λ are 
dimensionless functions of the mean air content only. Equation 
(1) compares favourably with experimental data (Fig. 3, Top) but 
for the first step edge downstream of the inception point of free-
surface aeration and for the deflecting jet flow. 
In skimming flows, the air concentration profiles may be 
modelled by : 
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where K' is an integration constant and Do is a function of the 
mean void fraction only. Data are compared successfully with 
Equation (2) (Fig. 3 Bottom). Although Figure 3 highlights 
different shapes of void fraction distribution between transition 
and skimming flows, Equations (1) and (2) are theoretical 
solutions of the advection diffusion equation for air bubbles 
assuming different air bubble diffusivity profiles (Chanson and 
Toombes 2001). 
Figure 4 presents dimensionless distributions of bubble count 
rates F*dc/Vc, where dc is the critical depth and Vc is the critical 
flow velocity. The data are compared with parabolic curves. 
Toombes (2002) demonstrated the unicity of the relationship 
between bubble frequency and void fraction, and he proposed a 
sophisticated model comparing favourably with experimental 
data obtained in water jets discharging into air, smooth-chute 
flows and stepped chute flows. 
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 - Dimensionless distributions of void fraction in stepped chute flow 

 21.8º, h = 0.1 m) (data measured at outer step edges). Top : 
ition flow, qw = 0.058 m2/s. Bottom: Skimming flow : qw = 0.182 
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 - Dimensionless bubble count rate distributions (h = 0.1 m, l = 0.35 

Transition flow, qw = 0.058 m2/s 

ulent Velocity Field 
ater velocity distributions are presented in Figure 5 in 

s of the time-averaged air-water velocity V and turbulence 
sity Tu' = u'/V. Details of the processing technique were 

n in Chanson and Toombes (2001). Figure 5 includes 
ition and skimming flow data for the same flow conditions 



as in Figures 3 and 4. In skimming flows, the velocity data 
compare favourably with a power law  (Fig. 5 Bottom). 
The distributions of turbulence intensity Tu' exhibit relatively 
uniform profiles implying high turbulence levels across the entire 
air-water flow mixture (i.e. 0 ≤ y ≤ Y90) (Fig. 5). The trend, 
observed in both skimming and transition flows, differs 
significantly from well-known turbulence intensity profiles 
observed in turbulent boundary layers (e.g. Schlichting 1979). It 
is believed that the high rate of energy dissipation, associated 
with form drag generated by the steps, contributes to strong 
turbulent mixing throughout the entire flow. Although the 
quantitative values of turbulence intensity are large (~ 100%), 
they are similar to turbulence measurements in separated flows 
past rectangular cavity (Haugen and Dhanak 1966), in wakes 
between large stones (Sumer et al. 2001) and in developing shear 
region of plunging water jets (Chanson and Brattberg 1998). 
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Fig. 5 - Dimensionless velocity and turbulent intensity distributions 
(measured at the last step edge, α = 21.8º). Top : Transition flow : qw = 
0.058 m2/s, Vc = 0.83 m/s. Bottom : Skimming flow : qw = 0.182 m2/s, 
V90 = 3.47 m/s 
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racteristic Bubble/Droplet Sizes 
re 6 presents normalised probability distribution functions of 
le and droplet sizes. Each histogram column represents the 
ability of bubble/droplet chord length in 0.5 mm intervals : 
 the probability of chord length from 3.0 to 3.5 mm is 
sented by the column labelled 3.0. The last column indicates 
robability of chord lengths larger than 20 mm. 
results show a broad spectrum of bubble and droplet chord 
ths at each location. The chord length distributions are 
ally skewed with a preponderance of small bubble/droplet 
 relative to the mean. The probability of air bubble chord 
ths is the largest for bubble sizes between 0 and 2.5 mm for  
0.2 (Fig. 6 Top). It is worth noting the amount of bubbles 
r than 20 mm. Although water droplet chord distributions 
ar skewed with a preponderance of small droplet sizes 
ive to the mean, the distributions differ from bubble chord 
th distributions. For the same void and liquid fraction, the 
let chord mode and mean are larger than the corresponding 
le chord length data (Fig. 6). 
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 - Bubble and droplet chord length distributions in transition flow 
 0.058 m2/s, α = 21.8º). Top : air bubble chord lengths. Bottom : 

et chord lengths 

ble and Droplet Clusters 
spatial distribution of bubbles and droplets was analysed. In 
ly flow (i.e. C < 0.3), two bubbles were considered to form 
ster when they were separated by a water chord length 

ler than 1 mm. Such a distance is about 20 to 50 times 
ler than the mean water chord length in the bubbly flow 
n (C < 0.3). It is about the bubble size for which the 
scence probability of larger bubbles is negligible (Chesters 



1991, p. 268) and the length scale for bubble breakup in shear 
flows (Chanson 1997, p. 229) assuming a 0.5 m/s velocity. 
In skimming flows, 27% of air bubbles in average were 
associated with bubble clusters, almost independently of void 
fractions and mean chord length sizes. The average size of 
cluster bubbles was about 14% larger than the average bubble 
size. Nearly 76% of clusters comprised of two bubbles (Fig. 7). 
In transition flows, 37% of the bubbles in average were grouped 
in clusters, while about 74% of the clusters were made of two 
bubbles. 
A similar analysis of droplet clusters was performed in the spray 
region (i.e. C > 0.7). Two droplets were assumed to form a 
platoon if they were separated by an air chord length smaller 
than 1 mm. In skimming flows, the results showed a small 
number of droplet clusters : i.e., an average 11% of detected 
droplets formed a cluster, and about 89% of clusters included 
two droplets only. In transition flows, an average 19% of 
droplets were parts of clusters, and in average 83% of clusters 
comprised two droplets only. For the same void and liquid 
fraction, the probability of a bubble to travel as part of a cluster 
was larger than the probability of a droplet to travel in a platoon. 
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Fig. 7 - Number of bubbles per cluster in bubbly flows (C < 0.3, α = 
21.8º). Skimming flow: 17,834 detected bubbles, 2,796 bubble clusters. 
Transition flow : 37,454 bubbles, 4,580 clusters. 
 
Discussion 
A sensitivity analysis was performed in bubbly flows (C < 0.3, 
skimming flows) to ascertain the representativity of the results. It 
was shown that the number of detected bubbles Nab had to be 
greater than 800 to 900 for the cluster analysis results to be 
within 10% of the mean value, in terms of number of clusters, 
number of bubbles per cluster and size of bubbles in clusters. 
Further the cluster analysis highlighted the dual requirements to 
record a large number of bubble/droplet detections to improve 
the representativity of the samples, and to detect small water/air 
chord lengths associated with thin bubble/droplet interfaces. The 
writers believe that the present data acquisition rate (20 kHz per 
sensor for 20 s) was adequate in bubbly flows, but longer 
recording times are required in the spray region. 
 
Summary and Conclusions 
Detailed air-water flow measurements were conducted down a 
stepped cascade. The study demonstrates the strong aeration 
(Fig. 2, 3 & 4) generated by high turbulence levels extending 
from the stepped invert up to the pseudo free-surface (Fig. 5). 
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bubble and water droplet measurements highlight the broad 
trum of detected bubble/droplet sizes extending from less 
 0.2 mm to over 20 mm (Fig. 6). In the bubbly flow region 
 0.3), about 25% of detected bubbles were parts of bubble 
ers. Most clusters comprised of two bubbles with no obvious 
rential sizes (Fig. 7). 
all the large numbers of entrained bubbles/droplets generate 
 interfacial areas which in turn contribute to substantial air-
r mass transfer of atmospheric gases. The results explain the 
ygenation potential of stepped cascades, used for in-stream 
ration and in treatment plants. 
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