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Abstract

In numerical simulations of fluid flow by discrete-vortex
methods, the natural processes of vorticity creation at solid
boundaries and vorticity evolution in the flow domain are directly
modelled. The governing equations are formulated in terms of
vorticity, with the pressure terms eliminated. The calculations
then yield directly the evolution of the vorticity field. From the
vorticity field, streamlines and pressure fields are readily
obtainable. The derivation of the pressure field involves
evaluation of the time-rate of change of the velocity potential
resulting from variation with time of the surface-vorticity on
solid boundaries. The velocity potential, and hence the pressure,
can formally have physically-inadmissible multiple values.
Numerical procedures for the derivation of the pressure field
from the vorticity field are detailed, which prevent the occurrence
of multiple values or discontinuities in the calculated pressure.

Introduction

A numerical scheme, based on the discrete vortex and surface-
vorticity boundary-integral methods, has been developed to
calculate the time-dependent, two-dimensional flow over arrays
of bluff bodies. Calculations yield directly the evolution of
vorticity field in terms of the distribution of discrete vortices in
the flow domain and of surface-vorticity on solid boundaries.
Flow development is derived from the evolution of the vorticity
field. Variation of stagnation pressure in the flow is induced by
two mechanisms: the movement of vortices in the flow, and the
time-rate of change of surface vorticity on solid boundaries.
Calculation of the stagnation-pressure variation induced by
surface-vorticity elements involves the evaluation of the velocity
potential associated with the surface-vorticity elements.
However, the multi-valued nature of the velocity potential is not
consistent with the continuous and single-valued nature of the
pressure field. These problems are addressed and the derivation
of numerical procedures for their solution presented.

Theoretical Background

In the absence of external force, the Navier-Stokes equation for
an incompressible flow can be expressed in the form

atu—uxw:—leo +vVou, (1)
Y

or, in terms of vorticity, as
00+uesVo=neVo+vVio, )

where u is fluid velocity vector, ®=Vxu the vorticity, t time and
v the fluid viscosity. Implementation of Eq. (2) in vortex methods
for calculating two-dimensional flow involves splitting the
advective-diffusive motion in each time step into two fractional
steps [1]: convection (d,@+u-Vo) and diffusion vwW2@ of vorticity
(vortex stretching ®-Vu can occur only in three-dimensional
flow). In a system consisting of a solid body which is represented
by M panels, the boundary condition of zero-velocity at solid
boundaries is satisfied (at collocation points of the panels) by
creating a vorticity sheet which is approximated by a set of two-
dimensional surface-vorticity elements with strengths v,, n =
1,2,...M, each element being equivalent to a discrete vortex of
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strength y,As, (where As, is the length of the element). For the
satisfaction of the closure of the surface-pressure distribution on
the solid body, the condition of zero-circulation around the body
contour is explicitly expressed in the governing equation for
vorticity creation. Thus, the distribution of surface-vorticity
created on the body satisfies the condition Zy,As, = 0. The
vorticity that is created at solid boundaries and shed into the flow
is represented by a set of discrete-vortices, with circulation AT, j
= 1,2,...Z. Thus mathematical modelling of bluff body flows by
the method of discrete vortices involves determination of the
circulations of the bound discrete vortices and the evolution of
the vortices in the flow: a solution is to be obtained for the
vorticity distribution as a function of space and time.

By using the vector identity V2u=V(V-u)-Vx(Vxu), Eq. (1) can
be rewritten as

inoz(u—VV)xw—a—u . 3)

p ot
Given a vorticity field @ and its evolution with time, the velocity
field wu and its time derivatives du at any point can be obtained,
and hence Eq. (3) can be integrated to give the stagnation
pressure p, at any point. In the vortex method, with the
continuous vorticity field represented by a system of discrete
vortices, the vorticity ® = 0 in the flow domain, except at the
vortex singularities. Eq. (3) therefore reduces to
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Thus, Vp, can be obtained by evaluation of the time derivative of
velocity field du. Given the vorticity field at two distinct time
instants, say ®(t) and ®(t +At), we are able to construct the
associated velocity fields u(t) and u(t + At), and hence the time
derivative o, by finite difference methods. In the present
numerical scheme, with the motion of discrete vortices being
tracked, the evolution of the velocity field is a function of the
motion of the discrete vortices, and du can be derived directly
from the vortex motion. In the presence of a uniform free-stream
U.., a system of Z discrete vortices AT’ at position (x;, y;) in the
flow domain and a distribution of surface vorticity yAs on solid
boundaries, the velocity u at point (X, y) can be expressed as

Z AT
u=Uy+ Z—Jz[(y -y —(x _Xj)]
j=1 ZTer (5)
M
As
T ZY;'—;"[(y V)= Xp)]
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where 17" = (x-x)” + (y-¥)" T’ = XX’ + (YY) Ko Y)
denotes the coordinates of the collocation point on panel segment
Sm, and v, is the strength of the surface-vorticity sheet
corresponding to the system of Z discrete vortices at their current
positions. Note that Eq. (5) describes a velocity field in which the
boundary conditions on solid boundaries are satisfied.

Numerical Scheme

It is pertinent to introduce the numerical scheme before
differentiation of Eq. (5) is carried out to obtain du. Consider a



flow started impulsively from rest at t = O and its subsequent
development calculated using a timestep At. The numerical
procedures in each timestep involve convection and diffusion of
discrete vortices, creation of surface vorticity on solid surfaces
and its subsequent introduction into the flow as nascent discrete-
vortices. The beginning of a time step is taken to be the instant
just after shedding of surface vorticity v,, into the flow domain.
The entire vorticity field ®(t) then consists of a system of Z
discrete vortices at positions (xk, yk), where Z includes the
nascent vortices equivalent to the surface vorticity sheet which
have just been shed from the surface. At this particular moment,
the surface vorticity sheet has vanished, i.e. y,, = 0. However, the
boundary conditions are still satisfied because the nascent
vortices are effectively equivalent to the surface vorticity sheet.

Evolution of this system of Z discrete vortices by convection and
diffusion, over the duration of a timestep At, brings them to their
new positions (x**', k+1) Corresponding to these new vortex
positions (x**!, y**), a new surface vorticity sheet is created to
restore the boundary condition at solid boundaries. It is then
conceptually correct to consider the surface vorticity sheet being
changed from zero to a finite non-zero value over the duration of
a timestep At. As a result of the motion of these Z discrete
vortices and the creation of a new surface vorticity sheet, the
entire vorticity field has evolved from o(t) to a(t +At), and the
appropriate boundary conditions have been restored at solid
boundaries in readiness for the next time step. At this point, the
final instant in the time step, the newly created surface vorticity
sheet is shed into the flow domain as nascent vortices at the very
beginning of the next time step. It is at this moment that the
system of Z discrete vortices is increased by the number of
nascent vortices; Z remains constant throughout the remainder of
the timestep.

It should be noted that the creation of surface vorticity on solid
boundaries is associated with the motion of discrete vortices; and
that the surface vorticity vy,, is the only quantity of vorticity that
changes with time; the circulation of discrete vortices AT in the
flow field remains constant, i.e. d(AT})=0.

Calculation of Pressure field

Taking the time derivative of the velocity field of Eq. (5), we
have

ou_ 1 & . d
—=—Y AL —
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Let Vj[vy, vyl = [dxy/dt, dyy/dt] denote the transport ve10c1ty of
dlscrete vortex AT from its initial position (x¥, y*) at the
beginning of a tlmestep to the final position (x**!, k+1) at the end
of that timestep. Note that the transport velocity Vjis the result of
both convection and diffusion and is generally different from the
local flow velocity, noted by (u¥, v¥), at vortex position (x*, y*).

Substitution of Eq. (6) in Eq. (4) gives
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With knowledge of the derivative du and hence the pressure
gradient Vp,, one may compute p, at any point by integrating Eq.
(7) numerically by the finite difference methods. In this case, it is
vital to form a finite difference mesh large enough to establish
known boundary conditions (i.e. stagnation pressure at infinity p,
= p.. + %pU.? and to use a finite difference step size small
enough to reveal detail in regions of high pressure gradient, as
well as to minimise numerical error. These constraints on finite
difference methods make direct numerical integration of Eq. (7)
very inefficient in terms of computing time.

Alternatively, integration of Eq. (7) can be carried out
analytically to give p,. The two sums on the right-hand side of
Eq. (7) relate the stagnation pressure distribution to the change of
surface vorticity with time and to the transport of vorticity in the
flow, and will be treated separately. Integrating the second
summation of Eq. (7) and introducing the term p,, to represent
the stagnation pressure induced by the moving vortices, we have

Pov _ 1 L
T:Ejva .dS:j:1 2nr? Xj_vaj)
3)
zZ
= ZUiJ oV
=

where Uj; is the velocity at i induced by a vortex Al at j. This
result, Eq. (8), is identical to the expression presented by
Porthouse (1983) who derived the stagnation pressure from the
term (u-vV)xo, interpreted as vortex flux by Porthouse. Note that
the pressure field p, is conservative. This allows us to use Eq. (8)
to evaluate the stagnation pressure induced by the moving
vortices.

For the variation in stagnation pressure p,, induced by the
changing surface vorticity, the pressure gradient is

gy N dtm As

o Poy = dt o [( —¥Ym)—(xX— Xm)]

®

The stagnation pressure field p,, is conservative and the
integration of Vp,, between any two distinct points is therefore
independent of the path between the points. The integration gives
Doy a5

poy _ 1 d'Ym Dm Aq e

p | dt

M
q)vm
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where v, is the surface vorticity created on solid boundaries
during time At, 9m=tan'1(y—ym)/(x—xm) the angle made at the
pivotal point on segment s, by a point at (X, y), and ¢, = -AI'6/2n
the velocity potential of a discrete point-vortex AI'. The term
dy,/dt in Eq. (10) is approximated by 7v,/At because the
magnitude of the surface vorticity sheet changes from 0 to vy,
over a timestep At. It can be seen that p,, given by Eq. (10), is the
sum of the time rates of change of the velocity potentials of all
the vortex sheet elements on solid bodies.

By the principle of superposition, the two potential-flow pressure
fields poy and p,, can be added to give the stagnation pressure p,
(= pov + Poy) Which is a solution to the Navier-Stokes equation.
However, before Eq. (10) is evaluated for p,,, consideration of
the mathematical nature of the velocity potential ¢, of a discrete
vortex is pertinent. Being a function of the angular displacement



0, the velocity potential ¢, of a point vortex AT is a multi-valued
scalar function: as 6 increases from zero, ¢, also increases until at
0 = 2m it becomes ¢,=Al. Another circuit round the vortex
increases ¢, by another AI'. A multi-valued function is not
consistent with the single-valued and continuous nature of the
pressure field. Therefore, it is necessary to clarify the calculation
of p,, from the velocity potential of a vortex.

It is instructive to consider the particular case of an isolated
discrete vortex AI' in an unbounded fluid which induces a
circulating motion in the fluid around it. The fluid is at rest
except in so far as it is disturbed by the vortex; in particular the
velocity and pressure tend to zero at great distances from the
vortex. Assume that we are able to increase the circulation of this
vortex by dAI' during a time increment of dt. Use of Eq. (10) to
compute the pressure distribution associated with dAT/dt,
through the term d¢,/dt, would imply a multiplicity of values for
the pressure and also a constant non-zero finite total pressure,
po20, along any radial direction even at infinity; both these
effects are physically impossible. Prandtl and Tietjens (1934, Art.
71) discuss this issue and conclude that if a motion with
circulation exists it will persist, but such motion cannot be
produced from rest. It is physically impossible to change the total
circulation in the fluid without temporarily upsetting the
continuity of the fluid as, for example, by the insertion of a rigid
body into the fluid. This conclusion is consistent with Kelvin’s
circulation theorem which states that the circulation in a flow
remains constant with time.

In a real flow, and also in the present numerical model, equal
amounts of vorticity of opposite sign are generated on the body
surface, so that the net circulation created on the body is equal to
zero. Despite the change in circulation (yAs) with time on each
segment of the body, the time rate of change of circulation on the
whole body remains unchanged and equal to zero. An observer
distant from the body will not experience any change in velocity
or in the pressure field due to the change of surface vorticity on
the body. Provided the condition of zero circulation generated
around a body contour is satisfied, Eq. (10) is valid to predict the
stagnation pressure field associated with the time rate of change
of surface vorticity on the body. In the present numerical scheme,
the condition of zero circulation around a body contour has been
satisfied by the enforcement of XyAs = 0, and hence the
prerequisite condition for the evaluation of p,, from Eq. (10) is
fulfilled. The practical problem remaining is the determination of
0 values so as to avoid discontinuities and multiple values of @,.

Evaluation of Eq. (10) for p,, at a point (X, y) requires
determination of the angles 0, (m = 1,2,...M) which the lines
joining the collocation points on the body to that point make with
the reference datum. Although the intrinsic multi-valuedness of
¢, could be eliminated by setting the range of 0 to be 0 to 2, o,
then experiences a discontinuity as 6 moves across the datum
axis, where its value jumps from 0 to 2m; and when a point lies on
the datum axis, ¢, has an indeterminate value between 0 or 2m.
Because it is the entire vortex sheet on a body that determines the
pressure distribution induced by the creation of surface vorticity,
the pressure given by Eq. (10) will be correct only if 0, is finite
and well-defined and its variation around the body contour is
smooth and continuous. Evidently, when these conditions are
satisfied, the sum in Eq. (10) becomes independent of the
selection of datum axis. We must therefore select a proper datum
axis for measuring 6, to ensure a smooth and continuous variation
in 0 around the body contour, and its orientation will be
determined by the geometric relationship between a particular
point and the body.
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Figure 1. Determination of the reference datum axis for the
evaluation of 0,,,.

Consider a point (x, y), in the flow field as shown in Figure 1.
The angle between the tangents from it to the solid body is A.
All the lines joining the pivotal points on the body and point (X,
y). must lie between these tangent lines. If the datum axis has an
orientation which lies inside angle A, the values of 0, measured
from this datum axis will fall in the vicinity of the discontinuity.
However, when the datum axis is rotated to such an angular
position that it lies outside angle A, the values of 0,, measured
from the new datum axis will have a smooth and continuous
variation. Any angular position outside the angle A can be used
as a proper orientation for the datum axis for point (X, y),.

Since the orientation of the datum axis for a particular point is
determined by its geometric relationship with the body, it has to
be determined independently for each point (for each body in
multi-body systems). Figure 1 shows the range of angular
position that is possible as an orientation for the datum axis for
two distinct points in the flow field: (360°-A) for point (X, y), and
(360°-B) for point (X, y)p.

Adding the contributions to the stagnation pressure from the
uniform main stream, the moving vortices, and the creation of
surface vorticity, we obtain the pressure coefficient at any point
in the flow field as

z L YmAsm 2
Cp=1+2 ;Uij-VjJr Zmem -u® . (1D
j=1 m=1

where the pressure coefficient is defined as C, = (p - p. )/ VapU.2,
and the other symbols represent non-dimensional quantities. The
pressure coefficient given by Eq. (11) is in fact an analytical
solution to the contour integral of pressure gradient given by Eq.
(7), along a path, excluding the body contour, from infinity to a
point in the flow domain or on the body contour.

Application of Numerical Scheme

The numerical scheme developed has been applied to flow over a
tandem array of two square cylinders, with gap-to-thickness ratio
G = 2, at Reynolds number Re, = 500 (based on plate thickness
h). The boundary of each of the cylinders is represented by 80
equal straight panels. The flow is started impulsively from rest at
t = 0, and its subsequent development calculated at times t
(normalised by U., and h), advancing by intervals of At = 0.02.

Discrete-vortex distributions yielded directly by the calculation,
for two time instants of the fully-developed flow are shown in
Figure 2. The corresponding streamlines and instantaneous
pressure fields are presented in Figures 3 and 4 respectively. The
values shown in Figure 4 are coefficients of static pressure
obtained by using Eq. (11).



Figure 2. Discrete vortex distribution for flow over a
tandem array of square cylinders with gap G =2; t =42

(b)yt=45

Figure 4. Pressure contours: (a) t = 42; (b) t = 45.

Values shown are coefficients of static pressure.

Conclusion

A numerical procedure for calculating the pressure field in flow
simulation by discrete-vortex methods has been developed. By
tracking the position and motion of discrete vortices and the rate
of change of surface-vorticity at solid surfaces, the pressure field
at any general point in the flow field and also on the solid
surfaces can be calculated. The problems of multi-valuedness and
discontinuities in the calculated pressure, associated with the
velocity potential of vortices, are overcome by relating the
surface-vorticity distribution on a solid body to the closure of the
pressure distribution on the body, and by selecting an appropriate
axis of reference for each general point concerned.
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