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Abstract
In numerical simulations of fluid flow by discrete-vortex
methods, the natural processes of vorticity creation at solid
boundaries and vorticity evolution in the flow domain are directly
modelled. The governing equations are formulated in terms of
vorticity, with the pressure terms eliminated. The calculations
then yield directly the evolution of the vorticity field. From the
vorticity field, streamlines and pressure fields are readily
obtainable. The derivation of the pressure field involves
evaluation of the time-rate of change of the velocity potential
resulting from variation with time of the surface-vorticity on
solid boundaries. The velocity potential, and hence the pressure,
can formally have physically-inadmissible multiple values.
Numerical procedures for the derivation of the pressure field
from the vorticity field are detailed, which prevent the occurrence
of multiple values or discontinuities in the calculated pressure.

Introduction
A numerical scheme, based on the discrete vortex and surface-
vorticity boundary-integral methods, has been developed to
calculate the time-dependent, two-dimensional flow over arrays
of bluff bodies. Calculations yield directly the evolution of
vorticity field in terms of the distribution of discrete vortices in
the flow domain and of surface-vorticity on solid boundaries.
Flow development is derived from the evolution of the vorticity
field. Variation of stagnation pressure in the flow is induced by
two mechanisms: the movement of vortices in the flow,  and the
time-rate of change of surface vorticity on solid boundaries.
Calculation of the stagnation-pressure variation induced by
surface-vorticity elements involves the evaluation of the velocity
potential associated with the surface-vorticity elements.
However, the multi-valued nature of the velocity potential is not
consistent with the continuous and single-valued nature of the
pressure field. These problems are addressed and the derivation
of numerical procedures for their solution presented.

Theoretical Background
In the absence of external force, the Navier-Stokes equation  for
an incompressible flow can be expressed in the form
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or, in terms of vorticity, as
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where u is fluid velocity vector, =∇×u the vorticity, t time and
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��Eq. (2) in vortex methods

for calculating two-dimensional flow involves splitting the
advective-diffusive motion in each time step into two fractional
steps [1]: convection (∂t +u⋅∇ ����	�	������
�� ∇2 �of vorticity
(vortex stretching ⋅∇u can occur only in three-dimensional
flow). In a system consisting of a solid body which is represented
by M panels, the boundary condition of zero-velocity at solid
boundaries is satisfied (at collocation points of the panels) by
creating a vorticity sheet which is approximated by a set of two-
dimensional surface-vorticity elements with strengths n, n =
1,2,...M, each element being equivalent to a discrete vortex of
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gth n �n (where �n is the length of the element). For the
faction of the closure of the surface-pressure distribution on
olid body, the condition of zero-circulation around the body
our is explicitly expressed in the governing equation for
city creation. Thus, the distribution of surface-vorticity
ed on the body satisfies the condition Σ n sn = 0. The
city that is created at solid boundaries and shed into the flow
presented by a set of discrete-vortices, with circulation j, j
,...Z. Thus mathematical modelling of bluff body flows by
ethod of  discrete vortices involves determination of the

lations of the bound discrete vortices and the evolution of
vortices in the flow: a solution is to be obtained for the
city distribution as a function of space and time.

sing the vector identity ∇2u≡∇(∇⋅u)-∇×(∇×u), Eq. (1) can
written as
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n a vorticity field  and its evolution with time, the velocity
  u and its time derivatives ∂tu at any point can be obtained,
hence Eq. (3) can be integrated to give the stagnation
ure  po at any point. In the vortex method, with the

inuous vorticity field represented by a system of discrete
ces, the vorticity �= 0 in the flow domain, except at the
x singularities. Eq. (3)  therefore reduces to
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, ∇po can be obtained by evaluation of the time derivative of
city field ∂tu. Given the vorticity field at two distinct time
nts, say (t) and (t + ���� ��� ���� ����� �
� �
�������� ���
ciated velocity fields u(t) and u(t + ���� ��	������� ���� ����
ative ∂tu, by finite difference methods. In the present

erical scheme, with the motion of discrete vortices being
ed, the evolution of the velocity field is a function of the
on of the discrete vortices, and ∂tu can be derived directly
 the vortex motion.  In the presence of a uniform free-stream
a system of Z discrete vortices j at position (xj, yj) in the
 domain and a distribution of surface vorticity ��
���
��	
daries, the velocity u at point (x, y) can be expressed as
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e rj
2 = (x-xj)

2 + (y-yj)
2, rm

2 = (x-xm)2 + (y-ym)2, (xm, ym)
tes the coordinates of the collocation point on panel segment
and m is the strength of the surface-vorticity sheet
sponding to the system of Z discrete vortices at their current
ions. Note that Eq. (5) describes a velocity field in which the
dary conditions on solid boundaries are satisfied.

erical Scheme
 pertinent to introduce the numerical scheme before
rentiation of Eq. (5) is carried out to obtain ∂tu. Consider a



flow started impulsively from rest at t = 0 and its subsequent
development calculated using a timestep �� The numerical
procedures in each timestep involve convection and diffusion of
discrete vortices, creation of surface vorticity on solid surfaces
and its subsequent introduction into the flow as nascent discrete-
vortices. The beginning of a time step is taken to be the instant
just after shedding of surface vorticity m into the flow domain.
The entire vorticity field (t) then consists of a system of Z
discrete vortices at positions (xk, yk), where Z includes the
nascent vortices equivalent to the surface vorticity sheet which
have just been shed from the surface. At this particular moment,
the surface vorticity sheet has vanished, i.e. m = 0. However, the
boundary conditions are still satisfied because the nascent
vortices are effectively equivalent to the surface vorticity sheet.

Evolution of this system of Z discrete vortices by convection and
diffusion, over the duration of a timestep ����������������
������
new positions (xk+1, yk+1). Corresponding to these new vortex
positions (xk+1, yk+1), a new surface vorticity sheet is created to
restore the boundary condition at solid boundaries. It is then
conceptually correct to consider the surface vorticity sheet being
changed from zero to a finite non-zero value over the duration of
a timestep �. As a result of the motion of these Z discrete
vortices and the creation of a new surface vorticity sheet, the
entire vorticity field has evolved from (t) to (t + �), and the
appropriate boundary conditions have been restored at solid
boundaries in readiness for the next time step. At this point, the
final instant in the time step, the newly created surface vorticity
sheet is shed into the flow domain as nascent vortices at the very
beginning of the next time step. It is at this moment that the
system of Z discrete vortices is increased by the number of
nascent vortices; Z remains constant throughout the remainder of
the timestep.

It should be noted that the creation of surface vorticity on solid
boundaries is associated with the motion of discrete vortices; and
that the surface vorticity m is the only quantity of vorticity that
changes with time; the circulation of discrete vortices j in the
flow field remains constant, i.e. ∂t( j)=0.

Calculation of Pressure field
Taking the time derivative of the velocity field of Eq. (5), we
have
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Let  Vj [vxj, vyj] = [dxj/dt, dyj/dt] denote the transport velocity of
discrete vortex j from its initial position (xk, yk) at the
beginning of a timestep to the final position (xk+1, yk+1) at the end
of that timestep. Note that the transport velocity Vj is the result of
both convection and diffusion and is generally different from the
local flow velocity, noted by (uk, vk), at vortex position (xk, yk).

Substitution of Eq. (6) in Eq. (4) gives
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 knowledge of the derivative ∂tu and hence the pressure
ient ∇po, one may compute po at any point by integrating Eq.
umerically by the finite difference methods. In this case, it is
 to form a finite difference mesh large enough to establish
n boundary conditions (i.e. stagnation pressure at infinity po

� �� � �∞
2) and to use a finite difference step size small

gh to reveal detail in regions of high pressure gradient, as
as to minimise numerical error. These constraints on finite
rence methods make direct numerical integration of Eq. (7)
 inefficient in terms of computing time.

natively, integration of Eq. (7) can be carried out
tically to give po.  The two sums on the right-hand side of
7) relate the stagnation pressure distribution to the change of
ce vorticity with time and to the transport of vorticity in the
, and will be treated separately.  Integrating the second

ation of Eq. (7) and introducing the term pov to represent
tagnation pressure induced by the moving vortices, we have
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e Uij is the velocity at i induced by a vortex j at j. This
t, Eq. (8), is identical to the expression presented by
ouse (1983) who derived the stagnation pressure from the

 (u- ∇)× , interpreted as vortex flux by Porthouse. Note that
ressure field po is conservative. This allows us to use Eq. (8)
valuate the stagnation pressure induced by the moving
ces.

the variation in stagnation pressure p
�

 induced by the
ging surface vorticity, the pressure gradient is
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stagnation pressure field p
�

 is conservative and the
ration of ∇p

�
 between any two distinct points is therefore

pendent of the path between the points. The integration gives
s
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e m is the surface vorticity created on solid boundaries
g time ��� m=tan-1(y-ym)/(x-xm) the angle made at the

tal point on segment sm by a point at (x, y), and v ���  !
��
����� �
�������� 
�� �� 	�������� �
����

���"� �� The term

dt in Eq. (10) is approximated by m/ � because the
itude of the surface vorticity sheet changes from 0 to m

 a timestep �. It can be seen that p
�

 given by Eq. (10), is the
of the time rates of change of the velocity potentials of all
ortex sheet elements on solid bodies.

he principle of superposition, the two potential-flow pressure
s  pov and p

�
 can be added to give the stagnation pressure po

ov + p
�

) which is a solution to the Navier-Stokes equation.
ever, before Eq. (10) is evaluated for p

�
, consideration of

athematical nature of the velocity potential v of a discrete
x is pertinent. Being a function of the angular displacement
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�������������
�#���� �������������
��$��
�� v also increases until at
� �� ! � ��� ���
���� v� �� %�
����� �������� �
��	� ���� 

���"

���������� v� ��� ��
����� �� %� multi-valued function is not
consistent with the single-valued and continuous nature of the
pressure field. Therefore, it is necessary to clarify the calculation
of p

�
 from the velocity potential of  a vortex.

It is instructive to consider the particular case of an isolated
	�������� 

���"� � ��� ��� ���
��	�	� fluid which induces a
circulating motion in the fluid around it. The fluid is at rest
except in so far as it is disturbed by the vortex; in particular the
velocity and pressure tend to zero at great distances from the
vortex. Assume that we are able to increase the circulation of this
vortex by 	 �	�����������������������
��dt. Use of Eq. (10) to
compute the pressure distribution associated with 	 /dt,
through the term 	 v/dt, would imply a multiplicity of values for
the pressure and also a constant non-zero finite total pressure,
po≠0, along any radial direction even at infinity; both these
effects are physically impossible. Prandtl and Tietjens (1934, Art.
71) discuss this issue and conclude that if a motion with
circulation exists it will persist, but such motion cannot be
produced from rest. It is physically impossible to change the total
circulation in the fluid without temporarily upsetting the
continuity of the fluid as, for example, by the insertion of a rigid
body into the fluid. This conclusion is consistent with Kelvin’s
circulation theorem which states that the circulation in a flow
remains constant with time.

In a real flow, and also in the present numerical model, equal
amounts of vorticity of opposite sign are generated on the body
surface, so that the net circulation created on the body is equal to
zero. Despite the change in circulation ( �������� �����
�� ����
segment of the body, the time rate of change of circulation on the
whole body remains unchanged and equal to zero. An observer
distant from the body will not experience any change in velocity
or in the pressure field due to the change of surface vorticity on
the body. Provided the condition of zero circulation generated
around a body contour is satisfied, Eq. (10) is valid to predict the
stagnation pressure field associated with the time rate of change
of surface vorticity on the body. In the present numerical scheme,
the condition of zero circulation around a body contour has been
satisfied by the enforcement of Σ �� �� &�� ��	� ������ ���
prerequisite condition for the evaluation of p

�
 from Eq. (10) is

fulfilled. The practical problem remaining is the determination of
�
�������
�����
��

�	�	���
�������������	����������
������
�� v.

Evaluation of Eq. (10) for p
�

 at a point (x, y) requires
determination of the angles m (m = 1,2,...M) which the lines
joining the collocation points on the body to that point make with
the reference datum. Although the intrinsic multi-valuedness of

v��
��	�������������	����������������������
�� ��
����&��
�! �� v

����� �"���������� �� 	���
��������� ��� � �

��� ���
��� ���� 	����
�"��������������
�����'�������
��&��
�! (���	���������
���������
�
the datum axis, v� ���� ��� ��	�����������
�������������&�
��! �
Because it is the entire vortex sheet on a body that determines the
pressure distribution induced by the creation of surface vorticity,
the pressure given by Eq. (10) will be correct only if m is finite
and well-defined and its variation around the body contour is
smooth and continuous. Evidently, when these conditions are
satisfied, the sum in Eq. (10) becomes independent of the
selection of datum axis. We must therefore select a proper datum
�"����
������������ ���
������������

�����	��
�����
���
������
�
��� � ��
��	� ���� �
	�� �
��
���� ��	� ���� 
��������
�� ����� ��
determined by the geometric relationship between a particular
point and the body.
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re 1. Determination of the reference datum axis for the
ation of m.

ider a point (x, y)a in the flow field as shown in Figure 1.
angle between the tangents from it to the solid body is A.
he lines joining the pivotal points on the body and point (x,
ust lie between these tangent lines.  If the datum axis has an
tation which lies inside angle A, the values of m measured
 this datum axis will fall in the vicinity of the discontinuity.
ever, when the datum axis is rotated to such an angular
ion that it lies outside angle A, the values of m measured
 the new datum axis will have a smooth and continuous
tion. Any angular position outside the angle A can be used
proper orientation for the datum axis for point (x, y)a.

e the orientation of the datum axis for a particular point is
mined by its geometric relationship with the body, it has to
etermined independently for each point (for each body in
i-body systems). Figure 1 shows the range of angular
ion that is possible as an orientation for the datum axis for
distinct points in the flow field: (360°-A) for point (x, y)a and
°-B) for point (x, y)b.

ing the contributions to the stagnation pressure from the
rm main stream, the moving vortices, and the creation of
ce vorticity, we obtain the pressure coefficient at any point
e flow field as
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e the pressure coefficient is defined as Cp = (p - p∞�� � �∞
2,

the other symbols represent non-dimensional quantities.  The
ure coefficient given by Eq. (11) is in fact an analytical
ion to the contour integral of pressure gradient given by Eq.
along a path, excluding the body contour,  from infinity to a
t in the flow domain or on the body contour.

lication of Numerical Scheme
numerical scheme developed has been applied to flow over a
em array of two square cylinders, with gap-to-thickness ratio
2, at Reynolds number Reh = 500 (based on plate thickness
he boundary of each of the cylinders is represented by 80
l straight panels. The flow is started impulsively from rest at
0, and its  subsequent development calculated at times t

alised by U∞ and h), advancing by intervals of ����&�&!�

rete-vortex distributions yielded directly by the calculation,
wo time instants of the fully-developed flow are shown in
re 2. The corresponding streamlines and instantaneous
ure fields are presented in Figures 3 and 4 respectively. The

es shown in Figure 4 are coefficients of static pressure
ined by using Eq. (11).



Figure 2. Discrete vortex distribution for flow over a
tandem array of square cylinders with gap G = 2; t = 42

Figure 3. Streamline patterns: (a) t = 42; (b) t = 45.

(a) t = 42

Con
A nu
simu
track
of ch
at an
surfa
disco
velo
surfa
press
axis 

Refe
[1] P
and 
Univ

[2] P
aero
Repr

186
(b) t = 45

Figure 4. Pressure contours: (a) t = 42; (b) t = 45.

Values shown are coefficients of static pressure.

clusion
merical procedure for calculating the pressure field in flow
lation by discrete-vortex methods has been developed. By
ing the position and motion of discrete vortices and the rate
ange of surface-vorticity at solid surfaces, the pressure field
y general point in the flow field and also on the solid
ces can be calculated. The problems of multi-valuedness and
ntinuities in the calculated pressure, associated with the

city potential of vortices, are overcome by relating the
ce-vorticity distribution on a solid body to the closure of the
ure distribution on the body, and by selecting an appropriate
of reference for each general point concerned.
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