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Abstract
A numerical method has been developed to simulate the
interaction of two-phase flow with embedded internal
boundaries. Movement of the interface between fluid phases is
captured by the level-set front tracking method, which is coupled
with a high-resolution Navier-Stokes solver (employing the
Cubic-Interpolated-Propagation or CIP method) to provide an
accurate prediction of flow with free surfaces. This model of
multiphase flow has been successfully validated in the past and
applied to simulate flows with gas bubble or high-density liquid
drop. In this work, the multiphase flow solver has been modified
to model the embedded internal boundaries (or solids). The non-
slip boundary conditions are imposed by assigning virtual body
forces over surfaces which need not coincide with grid lines. This
approach readily allows simulation of flows in complex
geometries using simple computational meshes and without a
need of coordinate transformation or domain partition.
The proposed numerical method was successfully validated for
single-phase flow in simple or cross-section varying channels.
Simulations of flow around a cylinder and fluid dynamics during
the collision of a liquid droplet on a substrate were performed to
illustrate the method capability in handling single/two-phase
flow-solid interaction. The computational results were compared
with available experimental data and with simulation results
obtained by using other computational methods.

Introduction
Multiphase flows comprising multiple distinct, immiscible fluids
and bounded by topologically complex geometries are prevalent
in many natural and industrial processes. However, analysis of
such fluid dynamics problems is a challenging task due to the
presence of fluid-fluid interfaces and the limitation of the analy-
tical and numerical methods in dealing with complex geometries. 

As scientific computing and computer power have greatly
advanced in recent years, numerical methods for multiphase
flows, in general, and for interfacial problems, in particular, have
been developed. However, accurate simulation of multiphase
flows with complex and sharp interfaces presents a problem of
considerable difficulty, which is caused by complex interfacial
topology and steep changes of fluid properties across the
interface. Numerical methods developed to “capture” behaviour
of fluid-fluid interfaces are generally classified into either
‘Lagrangian’, ‘Eulerian’ or ‘hybrid’ groups. The 'Eulerian'
methods of dealing with interfacial problems employ a volume-
discretization of the whole Eulerian computational domain, while
modifying the numerical approximation to minimize numerical
diffusion at the interfaces. The numerical diffusion can be
excessive if the numerical method is of low order. At the same
time, high-order numerical schemes may cause numerical
oscillations around the interface, thus, leading to unphysical
solutions. In difference from the Eulerian approach, the direct-
tracking approach explicitly introduces additional computational
elements to track the front. This approach is known as a
'Lagrangian' approach, when the equations of motion are
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formed to equations for the interface itself. In general, this
eases considerably the amount of resolution necessary to
ide front sharpness, and eliminates numerical diffusion
ether.  In practice, direct tracking is best suited for well-
ed fronts that are easily identified by the initial conditions.

rid 'Eulerian-Lagrangian' methods have also been developed.
e can be divided into ‘volume-tracking’ and ‘front-tracking’.
‘volume-tracking’ methods are relatively simple and they are
rent in the ways of reconstructing the interface from the
me information, which usually makes the coding complex
may lead to incorrect results. Moreover, the volume-tracking
ods have difficulties in dealing with complex three-
nsional surface topology. The ‘front-tracking’ methods are
d on the use of a combination of a stationary grid, on which
Navier-Stokes equations are solved, coupled with a ‘front
er’, which provides information about the interface location
topology. In the case of the immersed boundary method
, this ‘tracker’ is an additional moving grid representing the
face. Another interface tracking technique is based on the
of a level function, which is smooth and is convected by
rlying flow (on the Eulerian stationary grid) (see [1,5]). This
ique retains most of the advantages of the volume-tracking

oach, while being simple enough for realization.
aling with flows in complex geometries, one usual approach
sing conventional structured-grid finite-difference/finite-
me methods with a body fitted co-ordinate system. This
oach usually requires coordinate transformation and division
e computational domain into blocks of simple geometry. The
 advantages of this approach are that imposition of boundary
itions is easy and the solver can be simply designed to
tain conservation properties. However, the complexity of the
rning equations resulting from coordinate transformation
cause difficulty in maintaining an accurate numerical

ion and adversely impact upon the stability and convergence
e solver. Alternatively, there is a different approach to
late flows in complex geometries, which is still based on the
-volume/finite-difference discretisation and employing

esian structured grids [3,7]. By representing the internal
daries via a forcing term added to the governing equations,
ethod allows simulation of flows in complex geometries

 simple computational meshes and without a need of
dinate transformation or domain partition.
is study, a numerical method has been developed to simulate
nteraction of two-dimensional, two-phase flow in complex
etries (or boundaries). Movement of the interface between

 phases is captured by the level-set front tracking method,
h is coupled with a high-resolution Navier-Stokes solver
loying the Cubic-Interpolated-Propagation or CIP method
]) to provide an accurate prediction of the interface

ement. The non-slip conditions on the internal boundaries
mposed by assigning virtual body forces over surfaces which
 not coincide with grid lines. The method is validated for
 cases of single-phase flows in irregular geometries. Some

cases of two-fluid flow interacting with a virtual boundary
lso studied.



Modelling Approach
As noted before, the modelling approach is based on: i) the level-
set front-capturing technique to model immiscible multiphase
flows with distinctive interfaces; (ii) a ‘forcing’ method to
simulate the complex internal/external boundaries; (iii) an
explicit high-resolution Navier-Stokes solver. With such a
modelling approach, simple Cartesian structured computational
meshes can be applied to simulate various flows with interfaces
in different geometries. 

The Level-Set Front-Capturing Technique
Essentially, the level-set technique employs a smooth level
function, �, to describe the interface separating two immiscible
fluids [1,5]. This level function is chosen as a signed distance
function with the zero level set defining the interface location.
The level function is positive in one fluid region and negative in
the other one and its absolute value indicates the distance to the
interface. The level function is convected by flow field u�  as
follows:

0)( ���� �� ut
�  (1)

Since this function is smooth across the interface (unlike the fluid
properties), the above convection equation can easily be solved
with high-order accuracy and without introducing numerical
oscillations. Using the level function, the steep changes of fluid
properties across the interface can be smoothed out to mitigate
numerical oscillations in the solution of Navier-Stokes equations.
For instance, fluid density and viscosity can be determined as:
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where H
�
 is a regularization Heaviside function and � is a

regularization parameter:

��

�
�
�

�
���
�

	
. if                                                 1
, if  )2/()/sin()2/()(
, if                                                0

)(
�

������

�

�

d
ddd
d

dH    (3)

One of the major advantages of using the level function is that
the geometric properties of the interface can also be easily
determined:

Normal vector:    
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Surface curvature:   
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Then, the surface tension force appearing in the momentum
equations can be fully defined in terms of the level function as:
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where � is the surface tension coefficient and �
�
(�) is a delta

function corresponding to H
�
:
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The level set method can handle complex topologic changes of
the interface (breaks, merges, etc.) and its formulation is general
for two- and three-dimensional problems.

‘Forcing Field’ Approach To Simulate Complex Boundaries
As described in [2,3,6,7], by introducing a body-force field,
complex geometries and boundary motion can be handled using
regular computational meshes in the Cartesian coordinate system.
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ntially, the body force is introduced in the fluid surrounding
oundaries, so that the chosen speed of boundary movement

be achieved. In practice, there are two methods to compute
oundary forces based on the concepts of either (i) feedback
ng [3,7] or (ii) direct forcing [2]. In this work, the method of
back forcing is employed, in which the forcing term assumes
xpression:
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e �f and �f are negative constants, u�  is the instantaneous

city of the boundary, and V
�

 is the required velocity of the
dary. As noted in [3], such a formulation of force
sponds to the introduction of a feedback control loop, which

rces the condition Vu
�

�

� at the boundary. It must be noted
the boundary location bx�  is generally not coincident with
ulerian (fixed) grid nodes and, therefore, the force must be

polated from the actual boundary location to the fixed grid
ts. The body force at grid nodes is then determined as:
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e ib is the index of boundary nodes, �l is the length of a
dary segment, and � is the discrete delta function defined as:
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rder to compute the boundary force, the boundary velocity
 be determined by interpolating the fixed-grid fluid
cities to the boundary nodes as follows:
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is work, a second-order accurate Adams-Bashforth scheme is
 for the time marching of the forcing term.
plication to simulation of flow in complex geometries, this
ing field’ approach can significantly simplify numerical
edure and reduce computational cost and difficulties
ciated with coordinate transformation and grid regeneration.

erical solver
olve the equation of level function convection and the
m of Navier-Stokes equations, a high-resolution numerical
edure, which can minimize numerical diffusion and
lations, is needed. In most finite-difference high-order
erical methods, high accuracy is achieved by increasing the
ber of discretization points used in the discrete
oximation of the derivative terms (stencil). Such an increase
e stencil is often undesirable because of many reasons (loss
e tridiagonal nature of matrices, difficulties in dealing with
dary conditions, etc.). In this work, an explicit numerical
edure, called Cubic-Interpolated Propagation (CIP) [9,10], is
ied to solve the system of differential equations. The method
coupled with the level set front-capturing method and has
 successfully applied to simulate various multiphase
lems with interfaces [1]. With the CIP method, high-order
racy of the numerical solution can be achieved on the normal
-difference stencil (5 points for two-dimensional problems).
method, however, must update the spatial derivatives of all



variables at every time step and requires extra memory to store
these derivatives. Even though the CIP method is an explicit
solver, it still requires the pressure field to be updated iteratively.
In this work, a multigrid method has been employed to accelerate
the iterative solution of the pressure correction equation.
Numerical Applications
In this section, some simulations are performed to validate the
developed modelling approach and demonstrate its capability. In
all simulations, the force-field constants �f and �f (see equation
8) are chosen to be –400,000 and -600, respectively. From some
preliminary numerical tests, such a choice of �f and �f provides
sufficiently fast response of the force field, so that correct
boundary conditions can be enforced. With this choice of
constants, the stable time step should be smaller than 1.5ms [3].

Single-phase flow over a backward-facing step
Flow over a backward-facing step is one of the simplest flow pro-
blems where flow separation and reattachment occurs. The flow
configuration is illustrated in figure 1. The problem prescribes a
parabolic velocity profile at the inlet. At the outlet, the following
boundary condition is applied: 

,0  and   0 ���� xotxot vuvuuu (13)

where 0u is the mean velocity at the outlet.

Figure 1. Illustration of the flow over a backward-facing step, showing a
main reattachment region, which attaches at x1, an upper recirculation
region, which separates at x2 and reattaches at x3.

The step height and the size of the inlet channel are the same.
The Reynolds number, based on the inlet height, is set to
Re=400. The computational domain is 30 step heights long in the
main channel and 6 step heights long for the inlet channel. The
simulation is carried out on a 40 by 480 uniform grid.
Boundaries of the step shown as discrete points in figure 2 are
where the boundary forces are specified. 

 

Figure 2. Speed of the flow in the channel with a backward-facing step.

Figure 2 shows the prediction result for the flow velocity in the
channel. The predicted length of reattachment region (x1) is
approximately equal to 8.2 step heights, which is in good
agreement with experimental data and numerical results reported
in other studies [4].

Single-phase flow around a cylinder
First, start-up flow around an impulsively cylinder is considered.
The calculation is performed on a square domain of size 2. The
cylinder diameter is 0.44 and the cylinder is located at the centre
of the computational domain. The grid is uniform and the grid
resolution is 256 by 256. To create a start-up flow, a uniform
velocity field is initialised in the domain and, at t=0, the force
field on the cylinder perimeter is turned on. The Reynolds
number of the flow is 550.
Figure 3 shows the streamlines and the vorticity isolines of the
flow at times �=t*U

�
/R=2.12 and 5.12. At �=5.12, the size of the

primary vortex is comparable to that of the cylinder. Some
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ndary vortices are also seen to develop on the side of the
der. The pictures and the calculated drag coefficient (equal
2 at �=5.12) are consistent with those obtained by Goldstein
. [3] using a spectral solver and the ‘forcing field’ method.

 
e 3. Streamlines and vorticity isolines around the cylinder at time
/R=2.12 and 5.12 (R-cylinder radius).

nger simulation of flow around a cylinder is also performed.
is simulation, the size of the computational domain is [5x20]
a much coarse grid ([64x256]) is used. The cylinder size is 1
its centre is located at (5,2.5). The flow Reynolds number is
 Figure 4 shows the flow streamlines and vorticity field
nd the cylinder, in which the Von Karman alternating eddies
learly observed in the wake of the obstacle. The predicted

 and lift coefficients as well as the frequency of the vortex
ding (figure 5) are in good agreement with the results and
reported in [4].

e 4. Vorticity field and streamlines of the flow around a cylinder.

e 5. Variation of lift and drag coefficients with time.

ision of a liquid droplet on a substrate
demonstrate the capabilities of the developed modelling
oach in dealing with multiphase problems, the model is used
mulate the collision of a liquid drop with a substrate. The
 is initially circular in shape and located at some distance
 a horizontal substrate. Under gravitational force, the drop
gain speed before hitting the substrate. In this simulation, the
face between the liquid drop and its surrounding medium is
sented by the zero level set and the substrate surface is

elled using the ‘forcing field’ technique. In this particular



test case, the substrate surface is not a complex geometry and the
simulation is only for a demonstrative purpose. 

Figure 6. Pressure field at the beginning of drop fall.

 
a) 

 
b)

 
c) 

 
d)

 
e) 

 
f) 

 
g) 

 
h)

Figure 7. Deformation of a drop hitting a substrate. Except for the first
picture (7a), the time advancement in the subsequent pictures is 0.1s.

The computational domain is 4 by 5 in size and the centre of the
drop is initially located at (2.5,2.8). The substrate surface is set at
a distance of 0.75 above the bottom of the computational domain.
The grid resolution is [160x200]. 
In this simulation, a small viscosity (1	10-5) is assigned to the
surrounding medium and the ratio between the liquid-drop
density and the surrounding density is 200 to 1. A surface tension
coefficient of 0.01 is specified for the drop. The gravity
acceleration is assumed to be 9.8 m/s2. The calculated speed of
the drop before hitting the substrate is about 4.8 m/s.
In figure 6, the calculated result of pressure field is presented. As
can be seen from the picture, our numerical solver can provide a
good prediction of pressure distribution inside the drop and near
the drop interface even with such a steep change of density.  The
prediction of drop deformation in time is presented in figure 7.
Even with the small grid used, the thin edge of drop spreading
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 is still resolved. The simulation stopped when the edge of
rop became close to the sides of computational domain. 

clusions
is work, a numerical method has been developed to simulate
action between two-fluid flows with interfaces and complex
 boundaries. The method is based on the front-capturing
 set method, used to deal with fluid-fluid interfaces, and the
ing field’ technique, which is efficient in dealing with
plex boundaries. Coupled with a high-accuracy numerical
r, the modelling method is shown to be able to simulate

plex flows using simple Cartesian regular grids. The
osed numerical method was successfully validated for
e-phase flow in cross-section varying channels. Simulations

ow around a cylinder and fluid dynamics during the collision
liquid drop on a substrate were performed to illustrate the
od capability in handling single/two-phase flow-solid
action.
re improvements of the modelling method may include (i)
tive grid refinement near the fluid-fluid and fluid-solid
faces to reduce computational cost and (ii) a method to
late elastic deformation of the solid boundaries under fluid-
 interaction.
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