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Abstract
The role of viscous effects during the Lagrangian separation
process for pairs of fluid particles moving apart in turbulent flow
is highlighted. New models based on the important physics are
compared with direct numerical simulations. Rare but extreme
flow events (large strains) are identified and are shown to
critically constrain the model separation performance. Adequate
account of the extremes is essential for good models, but has not
been adopted previously in the literature.

Introduction
The separation with time of initially close particle pairs in natural
turbulence (say of the atmosphere and ocean) is an important
process and, for example, determines concentration fluctuations
in pollution plumes, droplet interactions in clouds, swimming
predator-prey plankton encounters, amongst other phenomena.
The separation problem is simply the task of accurately
modelling the speed and statistics of random separations as
functions of time, which has proven to be a difficult task even
after eighty or so years of effort following on from Lewis Fry
Richardson in 1926 [1], recently summarised in [2]. The classic
Lagrangian inertial-range law has a coefficient with at least an
order of magnitude of uncertainty: the mean-square separation
grows like the product of the cube of elapsed time, the turbulent
kinetic energy dissipation rate, and an uncertain numerical
coefficient between 0.01 and 2. However, for many close
particle-particle interactions, the important physical processes are
those controlled by viscous effects. This note focuses on those
effects and their representation with simple models, as a step to
modelling all scales in turbulent separation problems. We
propose a stochastic differential equation as the model for
instantaneous Lagrangian acceleration, despite recent criticisms
of this assumption. The importance of fast accelerations and
maximum “strain-rates” is demonstrated, and the extreme-value
nature of the important processes explains the earlier difficulty in
achieving good results. Comparisons with Lagrangian results
from direct numerical simulations of turbulent flow demonstrate
that a well-posed model performs remarkably well.

Pair Separation Models
Pairs of distinct fluid particles can be characterised by the
magnitude of the distance, l, between them. Often questions of
practical significance depend on the behaviour of l with time. For
example, for populations of plankton in the ocean with a given
initial encounter separation 0l , at later times what proportion
stay in contact (say with 0ll ≤ ) under turbulent advection? Or for
an emission from a small chimney in the atmosphere, of radius l0
say, the issue is how long before average local dilutions, reflected
by growing root-mean-square values of the meandering plume
width l, render the local plume concentrations “safe.”
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y models for the random growth of l exist (see [2]), generally
deal homogeneous and isotropic turbulence. Because the
ration process of interest is inherently small scale, such
isation is well justified. Direct numerical simulations of
l) turbulence [3] also describe detailed properties for l,
lighting extreme behaviour for particle pairs with very small
l separations. For this case a tiny number of particles rapidly

rate, but many remain close together, causing the statistical
erties like the skewness and the flatness factor to be
alously large and very hard to predict with simple models.

c diffusion processes do not generally describe highly non-
sian separation behaviour, and more advanced models are
ssary. One of the simplest such models for representing the
ration process is a stochastic differential equation for the
ration rate, dtdlu = ,

udtdldWldtluadu =+= ,)(),( χ (1)
e dW  is random white noise [4], with the properties that

0=  and dtdW =2 , where the overbar indicates a mean
tity. The function ),( lua  in (1) is chosen to accurately
ct Eulerian velocity-field properties [5,6] and the function
 depends on viscous properties for small separations [7].

ever, previous applications of (1) to relative dispersion have
uccessfully captured the extreme variability of the viscous

ration process [7], and better performance of alternative
els [8] has led to concerns of the general applicability of
astic models like (1). This is despite the widespread success

 models achieve for turbulent dispersion, particularly in
spheric pollution problems [9,10].

ever, the careful analysis in this note will demonstrate that
el (1) is fully adequate when appropriate detail is
rporated in the formulation, in particular when all the
ant Eulerian information is encoded into the model. This
mation is embodied in the probability density function (pdf)
he velocity increment u at fixed separation l: ( )luPE ; . Most
els in the literature effectively represent this pdf with
sian tails, i.e. ( ) ( )22

2
1exp~; ±− σuluPE  as ±∞→u . In

ral this means that the drift term a in (1) is too small at large
 rapidly accelerate separation velocities to large amplitude
consequently the separation itself to large values. We find
ad that it is necessary to represent the pdf tails with power-
ranges, ( ) φ−uluPE ~;  for sufficiently large u  (but not

tly as ±∞→u ), to get separation behaviour that
sponds with observations [3, 8]. To clearly demonstrate
 critical properties, which are essential for complete

elling of separation processes in turbulent dispersion, it is
cient in the first instance to consider separation processes



solely in the dissipation sub-range. There, all processes are
viscosity dependent, and the flow varies “smoothly”
(analytically) in space, and the separation velocities are
completely characterised by random straining fields. The key pdf
is now the Eulerian pdf for the strain, s, but this is simply
obtained from ( )luPE ;  in the limit as 0→l .

Dissipation Sub-Range Separation Processes
The process now considered is when initial separations are so
small that viscous effects always dominate. The turbulent flow at
small scales is defined statistically, as usual, by the key
parameters of the mean energy dissipation rate per unit mass ε
and the kinematic viscosity ν . Thus a length scale for viscous

effects is just Kolmogorov’s microscale, ( ) 4/13 ενη = , and a

time scale is ( ) 2/1ενη =t , both standard quantities [11]. Of
course, for the atmosphere or ocean, these are tiny scales, but the
purpose here is to compare models with numerical simulations,
which currently have only modest separations of scale. The
process we consider is the separation in time of particle pairs
with initial separations η<<0l , but for finite times ηtt >>  with

the restriction that η<<)(tl . Note that eventually nearly all
particle pairs will separate beyond the viscous scales, but for
pairs sufficiently close together initially, the length of time that
particles stay together can be indefinite. In practice, when η4≤l
dissipation sub-range approximations suffice. These restrictions
mean that the velocity increment over a fixed separation l is
proportional to the distance l multiplied by the local strain-rate s:

slu = . The Eulerian statistics for these variables are the usual
longitudinal variables, i.e. for cartesian coordinates

( ) ( )( ) ( )iiiii lll
x
u

sllxulxuu =
∂
∂

=−+= 2

1

1, . (2)

Eulerian properties for both these variables are well known [11]:
the Eulerian averages 22

ss σ=  and 22
1 uu σ=  define a convenient

Reynolds number, the Taylor-scale Reynolds number, as
su νσσλ

2Re = . For atmospheric flows we can have 310Re >λ ,
but for numerical simulations the state-of-the-art is 230~Reλ

[13]. The identity νσε 2
15
1

s=  should also be noted.

The stochastic model in the dissipation sub-range is simply
derived from (1) by noting that all two-point increment variables
must be proportional to l; thus slu = , ( )lsa ω= , l0χχ =  and

ldtsdslsdldsldu 2+=+= . Taken together, the stochastic
model for the joint evolution of the strain rate and the separation
decouples in the dissipation sub-range and is modelled by the
pair of equations

( ) ( ) �
�
�

�
�
� ′′=+−= �

t
tdtslldWdtssds

000
2 exp,)( χω . (3)

Solutions of this system will generally be obtained numerically,
for randomly generated sequences of the white noise; these are
easily developed on a personal computer with simple
discretisation algorithms (see below) and with repetitive multiple
realisations for statistical sampling.

Fokker-Planck Equations
The key to this problem is the drift function ( ).sω  The standard
approach is to use the Fokker-Planck equation corresponding to
(1) to constrain the drift term ( )lua ,  [4]. The implications for

( )sω  are then determined by letting 0→l . According to (1) the
Lagrangian transition joint probability density function for u and
l, ( )000 ,,;,, tlutluP , satisfies
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when averaged over suitable initial conditions [5], (4) yields
ulerian equation (for non-decaying turbulence)

2

2
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Pl

l
u EEE

∂
∂

=
∂

∂
+

∂
∂ χ . (5)

lly, in the limit of the dissipation sub-range where
( )sEsE splPsl σσ 11, −−= , and s1 ∂∂−∂∂→∂∂ −slll , the

ge of independent variables gives

2

2
2
02

12

s
p

s
p

s
p

ssp EEE
E ∂

∂
=

∂
∂

+
∂

∂
− χω

. (6)

 (6), for a given pE, it is a simple matter to obtain

( )
s

p
sdpspsps E

s

EEE ∂
∂

+′′−= �
∞−

2
02

12 3 χω (7)

 explicit form for the drift function ( )sω .

he other hand, the Lagrangian strain-rate evolution described
3) corresponds to the Fokker-Planck equation for the pdf
 given as

( )
2

2
2
02

1
2

s
p

s
ps

t
p

∂
∂=

∂
−∂+

∂
∂ χω , (8)

h has the long time “equilibrium” solution as ∞→t

( ) ( )( ) �
�
�

�
�
� ′′−′= �−

∞

s
sdssnsp

0

22
02exp ωχ , (9)

e n is a normalisation constant. Note that, in general,
) ( )sps E≠ . Thus while the Eulerian mean value for the strain
is zero, the Lagrangian mean value of strain,

( ) ∞

∞

∞− ∞ =� λdsssp  is a non-zero constant. The implication

 is that long-time separation growth is exponentially fast,

( ) ( ) ∞→�
�
�

�
�
� ′′= ∞� ttltdtsll

t
λexp~exp 000 , (10)

this accords with a common expectation [11], along with
0 , so that particle pairs eventually always separate.

mmary, the dissipation sub-range behaviour is characterised
xponential growth of the separation, at least for long times
while the separation remains within the dissipation sub-
e. More general numerical solutions of (3) will be considered
w, for particular forms of the Eulerian strain-rate pdf.

rian Parameterisations
Eulerian pdf function ( )spE  must be given in order to use
stochastic models as formulated. One convenient way to
meterise this function is to use an exact transport equation
3]: if ( )dtduuuuluuA =++≈= �� 2, γβα , then

u
AP

l
Pl

l
u EE

∂
∂

−=
∂

∂ 2

2
. (11)

 A is the conditional rate of change of the separation rate (it
e an acceleration). The quadratic-form assumption is found
e quite reliable when compared with direct numerical
lations, particularly in the dissipation sub-range [13]. In the
n-rate model limit ( )lssA 2

000 γβα ++=  and

( )
s

pss
s

p
ssp EE

E ∂
++∂

−=
∂

∂
−

2
0002 γβα

(12)

 moments of (12) then yield

( ) ( ) ( )4,3,2,11 0
1

0
2

0 =�
�
��

�
� −++−= −− nsssn nnnn γβα (13)

h can be solved for the coefficients in the quadratic form to
:
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Sss γγσβγσα   (14)

where the skewness is 33
ssS σ= , and the flatness 44

ssK σ= .
Thus the first four moments of the strain rate determine the
model fully; in fact the complete Eulerian solution of (12) is

( )( )
( )( )( )

( ) �
�
�

�
�
�
�

�

−∆
∆−+

×−++=
−

−

1
12tan3
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1

0

2
000

γ
γββ

γβα φ

s

ssnpE

(15)

with ( ) 1
02

3 11 −−+= γφ , ( ) 2
000 14 βγα −−=∆  and n~  is the

normalisation constant so that 1=�
∞

∞−
dspE .

Figure 1 shows solutions for the strain-rate pdf (15) compared
with direct simulation data for turbulence with a Taylor-scale
Reynolds number of Reλ  = 230, and for the appropriate
parameters 10,55.0 =−= KS . The agreement is remarkably
good over the range 55 ≤≤− ss σ . The deviations beyond this
inner core are crucial for modelling, at least for large positive
strains, and this is discussed below.
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Figure 1. Eulerian pdf for strain rate. Model (15) together with DNS
results. Model (15) works well over the inner range but breaks down at
larger values. The truncation line shown at s=8.8σs is discussed below.

Given (15) we can also easily derive the drift term ω (s) from (7):

( ) ( )
( ) 2

000

002
02

12
000 1

12
ss

s
sss

−++
++

−++=
γβα

γβχγβαω , (16)

which completes the specification of the stochastic model given
just the first few moments of the Eulerian field. However, there is
a problem with this solution: the Lagrangian pdf (9) is not well
defined over the range ∞≤≤−∞ ss σ , the difficulty evidently is
with the infinite upper limit, i.e. for large positive strains. The
cubic growth of integrated ω in (9) means that the pdf cannot be
normalised over a doubly infinite range of strain. Consequently,
we consider the model restricted to the semi-infinite range

ss ss σσ ∞≤≤−∞ . For simplicity, the assumption is also made
that the upper limit is sufficiently large so that the first few
moments are not significantly affected by truncating the tail; thus
we do not account for it explicitly in the Eulerian analysis. This
avoids an iterative process in the specification of (15) in terms of
the moments in (13). According to figure 1 we anticipate that the
truncation will be for strain rates 5>∞ ss σ , which means that
only for very high flatness factors will the truncation be a
significant factor. The important point to remember is that the
main role for the maximum strain-rate truncation is for the
Lagrangian growth-rate effects, which is indicated by the
sensitivity of (9) to the large strain-rate frequency.
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pdf (15) for large strain is characterised by a power-law tail,
h is quite “heavy”, which is to say the frequency is much
ter than Gaussian estimates. Beyond an upper bound,
ever, the tails of the actual pdf decay faster than any power-

and stretched exponential models are common in the
ture [14]. What this means is that there is always an
tive cut-off of the quadratic-form model. Equation (7) shows
 provided Ep  decays faster than a power law for large s,

( )22 sos +  as ∞→s , in which case the cancellation of the
ng order quadratic in (9) permits an equilibrium solution for
)s . However, for simplicity and numerical convenience, we

 consider a simpler hard-cut-off model where
∞≥ ss,0 . Thus ∞s  is a lumped parameter representing the

tive truncation of the maximum effective strain rate for
ration effects in turbulence. A better model of course would

ore precise tails for the pdf, but this is excessively complex
the simplicity of a single parameter representing the
rtant effects is sufficient for our purposes.

erical Methods
stochastic model for Lagrangian strain is particularly easy to
 numerically. A simple forward difference of (3) gives

( )( ) nnnnn ttssss ξχω ∆+∆−+=+ 0
2

1 (17)
e nξ  is an independent Gaussian random variable at each

 step with 0=nξ  and 12 =nξ . The strain at the initial step,
is selected to match the distribution of Eulerian strains
rding to (15). The time step is assumed to be uniform for our
oses so that ( ) nstns =∆  and ηtt <<∆ . For comparisons
 existing turbulence simulations [3,13,15] we calculate for
 spans of the order of ηt10 . This is because the simulations

begin with η4
1

0 =l  evidently retain dominant dissipation
e character for the time range suggested, but after this time
ficant numbers of separations are beyond the dissipation
range. For a given realisation of a sequence of Lagrangian
ns, say { }Nisi ,,2,1,0; �=  the corresponding separation is
mined with the trapezoidal rule in (3):

( ) ( )�
−

=
++∆=

1

0
12

1
0log

n

i
iin sstll . (18)

stics are obtained with M = 4x105 independent realisations.
ensemble of realisations, say ( ){ }Mil i

n ,,2,1,0; �=  at a
cular time instant, tnt ∆= , gives the statistics; for example,

ean separation is ( )� =
==

M

i
i

nMn lll
0

1 . Results are obtained

wn in the next section) for the mean, l , the root-mean-

re σl, where 22 ll =σ ; and the third- and fourth-order higher
ents as the skewness and flatness respectively:

( ) ( ) 2/3
23

llllS −−=  and ( ) ( ) 2
24

llllF −−= . (19)

parameters 2/3
0 15.3 −= ηχ t  and ss σ8.8=∞  are selected by

g the growth of the mean and root-mean-square separation
st the direct numerical simulations. The test of the model is
edict the non-Gaussian effects reflected in higher moments.
truncation approximation is illustrated in figure 1.

ults
res 2 to 5 show the separation statistics. Compared with
t numerical simulation data the agreement is very good for
 times as shown, but there is a systematic deviation as
asingly more pairs leave the dissipation sub-range. The most
ingful comparisons are those for times less than about 3tη.
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Figure 2. Lagrangian mean separation growth. DNS comparisons from
Reλ=230, l0/η=0.25. Parameters 2/3

0 15.3 −= ηχ t  and ss σ8.8=∞ .
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Figure 3. Lagrangian root-mean-square separation growth. DNS
comparisons from Reλ=230, l0/η=0.25. 2/3

0 15.3 −= ηχ t , ss σ8.8=∞ .
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Figure 4. Lagrangian separation skewness as a function of time. DNS
comparisons from Reλ=230, l0/η=0.25. Note the rapid rise of skewness.
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Figure 5. Lagrangian separation flatness as a function of time. DNS
comparisons from Reλ=230, l0/η=0.25. Note the rapid rise of flatness.

Also shown as dashed lines on figures 2 to 5 are evolutions of
separation according to a Gaussian model for pE, but which
typifies results for all models that do not have quadratic-form
accelerations and power-law pdf tails for large strains. In those
cases it is usual to have numerically much smaller Lagrangian
skewness and flatness and also much slower development with
time of the strongly non-Gaussian Lagrangian character. Such
models essentially have a single parameter χ0 to tune and are not
sensitive to large strain rates. Consequently it is not possible to
reasonably match the rapid early growth of higher moments as
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be seen in figures 4 and 5. Note that, for all models, the
th of the non-Gaussian effects becomes strong at large times
use of the exponential separation effect and at which time
separation statistics are trending towards lognormal.
ever, at such large times the actual simulation behaviour is
nger dissipation sub-range dominated (S and F peak due to

ial range and energy containing scale effects).

clusions
main role of the new model in this paper is to explain the
 early rise of non-Gaussian effects, not due to accumulated

ormality, but to large strain-rate accelerations. Accordingly,
odel is constructed to be sensitive to large strain rates and
depends on a parameter, ∞s , explicitly reflecting this

viour. It has been demonstrated at least qualitatively that key
acteristics of the pair separation process in turbulence are
rolled by the non-Gaussian tails of the Eulerian probability
ity at large velocities or straining flows. These effects only
me evident in Eulerian statistics well beyond five standard
ations and are consequently very rare. Nevertheless, these
me events largely control even the third or fourth moments
e Lagrangian separation, at least for small times, and the
liarity of this non-Gaussian behaviour has been noted in the
ture. However, both [7] and [8] have wrongly concluded
this highly intermittent extreme behaviour is not reasonably
elled with simple stochastic equations. The point to stress
 is that such simple models do allow the representation of
orrect physics, provided that the details are specified fully
gh. In the context of stochastic models of turbulence, it is
a surprise that important effects lurk well beyond five

erian) standard deviations, and this is an important lesson in
ral when modelling highly non-linear processes.

rences
Richardson, L.F., Atmospheric diffusion shown on a distance-
neighbour graph. Proc. Roy. Soc. London A 110, 1926, 709-737.
Sawford, B.L., Turbulent relative dispersion. Ann. Rev. Fluid Mech.
33, 2001, 289-317.
Yeung, P.K., Direct numerical simulation of two-particle relative
diffusion in isotropic turbulence. Phys. Fluids 6, 1994, 3416-3428.
Gardiner, C.W., Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences. 1983. Springer-Verlag.
Thomson, D.J., A stochastic model for the motion of particle pairs
in isotropic high-Reynolds-number turbulence, and its application
to the problem of concentration variance. J. Fluid Mech. 210, 1990,
113-153.
Kurbanmuradov, O.A., A new Lagrangian model of two-particle
relative turbulent dispersion. Monte Carlo Methods and Appl,. 1,
1995, 83-100.
Heppe, B.M.O., Generalised Langevin equations for relative
turbulent dispersion. J. Fluid Mech. 357, 1998, 167-198.
Malik, N.A. & Vassilicos, J.C., A Lagrangian model for turbulent
dispersion with turbulent-like flow structure: Comparison with
direct numerical simulation for two-particle statistics. Phys. Fluids
11, 1999, 1572-1580.
Luhar, A.K. & Britter, R.E., A random walk model for dispersion in
inhomogeneous turbulence in a convective boundary layer. Atmos.
Environ. 23, 1989, 1911-1924.
 Franzese, P., Luhar, A.K. & Borgas, M.S., An efficient Lagrangian
stochastic model of vertical dispersion in the convective boundary
layer. Atmos. Envrion. 33, 1999, 2337-2345.
 Monin, A.S. & Yaglom, A.M., Statistical Fluid Mechanics. Vol II
(J.L. Lumley ed.), 1975, M.I.T. Press, Cambridge, MA.
 Pope, S.B., Turbulent Flows., Cambridge University Press. 2000.
 Borgas, M.S. & Yeung, P.K., Conditional fluid particle
accelerations in turbulence. Theoret. Comput. Fluid Dynamics 11,
1998, 69-93.
 Sornette, D., Critical phenomena in natural sciences: chaos,
fractals, self-organisation and disorder: concepts and tools, 2000.
Springer.
 Borgas M.S. & Yeung P.K., Modelling relative dispersion in finite
Reynolds number turbulence. To be submitted J. Fluid Mech. 2001.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	No Other Papers by the Authors
	------------------------------

