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Abstract

For moderate Reynolds numbers, the isotropic rela-
tions between second-order and third-order moments for
temperature (Yaglom’s equation) or velocity increments
(Kolmogorov's equation) are not respected, reflecting a
non-negligible correlation between the scales responsible
for the injection, the transfer and the dissipation rate
of turbulent energy. For grid turbulence, the dominant
large-scale phenomenon is the non-stationarity (or, in an
experimental context, the streamwise non-homogeneity)
of statistical moments resulting from the decay of en-
ergy downstream of the grid. The objective of our paper
is to quantify the influence of this non-homogeneity on
various properties associated with the inertial and dis-
sipative ranges of scales. In particular, we will show
that a new term must be added to Yaglom’s and to Kol-
mogorov’s equations to account for the decay of second-
order moments and thus explain the observed depar-
ture of the inertial range from the isotropic ’4/3rds’ and
’4/5ths’ laws. Similar contributions must also be re-
tained in the isotropic forms of the budget equations for
the mean dissipation rates (g¢) and (). One of the infer-
ences from our work is that the reported non-universal
inertial-range properties are most often a result of the
large-scale influence rather than an indication of strong
departure from isotropy.

Introduction

One of the basic assumptions in statistical theories of
fully developed turbulence (in particular far from walls
or boundaries) is that, at large enough Reynolds num-
bers, three-dimensional effects involved in the transfer
of energy result in the existence of a range of scales for
which statistical properties become independent from the
large-scale production process. These properties are then
universal (i.e. they do not depend on the large-scale flow
specific features nor on the Reynolds number value), and
tend to satisfy isotropy over a range of scales (for which
the expression local isotropy is commonly used).

In this context, a relatively simple relation was derived
by Kolmogorov [5, see also 6] between the second- and
third-order moments of the longitudinal velocity incre-
ment Au = u(z +r) — u(z) (the angular brackets denote
time averaging, the separation r is along the longitudinal
direction, (¢) is the mean dissipation rate of the turbu-
lent kinetic energy and v is the kinematic viscosity of the
fluid),

A0+ 6 (@A) = S (1)
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The counterpart of Eq. (1) for a passive scalar such as
temperature, which then relates the second-order mo-
ment of the temperature increment Af = 6(z +r) —0(x)
and the third-order mixed moment (Au(A8)?), was ob-
tained by Yaglom [9, see also 6] (where ko is the thermal
diffusivity),

~(Au(A0)%) + 2k ((A0)%) = S(eo)r,

2
dr )
or A+ B = C, where (g4) is the mean dissipation (or
destruction) rate of half the temperature variance.

If one considers decaying grid flow, where the assumption
of isotropy is reasonably well satisfied (and the values
of (e4) and (e) are determined with very good accuracy
from the streamwise decay rate of half the temperature
variance and the turbulent kinetic energy respectively,
[4]), neither Eq. (1) nor Eq. (2) is verified even at
moderate Reynolds numbers. This is illustrated in fig-
ure (1), where A and B, as well as their sum, are plotted
as a function of the normalized separation r* (r/n, with
n = (v*/(¢))'/*; note that, throughout the text, quanti-
ties normalized by their associated Kolmogorov velocity
or temperature scale will be designated with a super-
script *) after they have been divided by (e¢)r in order
to highlight the presence (or absence) of a plateau at the
level of 4/3 for a particular range of scales.

It is only for very small scales (< 571) that the value of
4/3 is attained, this value being asymptotically imposed
by the fact that 3ko[d{(A#)?)]/dr must tend to twice the
isotropic value of (g4) when r approaches 1. In particu-
lar, it is obvious that using relation (2) (or relation (1))
to evaluate (g4) (or (g)) by adjusting a linear behavior of
—(Au(AB)?) (or —(Au?)) (which would be characteristic
of an inertial range behavior) will provide very poor re-
sults at small Reynolds numbers. This would lead to (g4)
being overestimated . The objective of the present paper
is therefore to derive new relations which provide turbu-
lent energy scale budgets that are more accurate than
Egs. (1) and (2), and compare them with experimental
data. For economy of space, the analytical development
will be reported for the temperature field. The reader can
refer to Danaila et al. [2] for the velocity field analysis.

Experimental details

Measurements were made on the centreline of the working
section (350 mm X 350 mm, 2.4 m long) of a non-return
blower-type wind tunnel, downstream of a biplane grid,
in the range 20 < x/M < 80 (M is the mesh size of the
grid). The mean longitudinal velocity of the flow, U, was
7 m/s. A square mesh (M = 24.76 mm, with 4.76 mm
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Figure 1: Comparison between normalized terms in Eq.
(2), at x/M=70: o, A/C, A, (A+B)/C. The horizontal
line is 4/3.

X 4.76 mm square rods) grid, with a solidity of 0.35,
was used. The Taylor micro-scale Reynolds number Ry
(= u'\/v, where u’ is the rms value of the longitudinal
velocity fluctuations and A is the Taylor micro-scale) is
approximately constant in x, with a value of about 70.

A mandoline was used to heat the flow in a way similar to
[8]. For all the measurements, the mandoline was fixed at
1.5M downstream of the grid. It was constructed from
fine Chromel-A wires of 0.5 mm diameter. The man-
doline comprised two parts separated by 15 mm in the
streamwise direction: the wires were horizontal in one
and vertical in the other. Each part had a resistance of
about 22 2 and was heated by a power supply. The total
power consumption was about 2 kW. The mean tempera-
ture AT relative to ambient was about 3 K in the tunnel.
The wire separation in each part was 24.76 mm, i.e. the
same as M. To prevent sagging due to thermal expansion,
small springs were used to keep each wire under tension.

Simultaneous measurements of the three components of
velocity and temperature were conducted, using a probe
comprising 2 X-wires and a cold wire. One X-wire was
in the (x ; y)-plane, and the other one was in the (x ;
z)-plane. To avoid contamination of the cold wire mea-
surements from the hot wires, the cold wire was located 1
mm below the centre of the two X-wires and shifted 0.5
mm upstream. The wires were etched from Wollaston
Pt-10% Rh.

The active length of the cold wire was about 800d.,
(dw = 0.63pm is the wire diameter). For the hot
wires, the diameter was d = 2.5 um, the length of the
active part being 200d. The hot wires were operated
with in-house constant-temperature anemometers with
an overheat ratio of 1.5. The cold wire was operated
with a constant-current (0.1 mA) circuit, also built in-
house. The output signals from the constant-current and
constant-temperature anemometers were passed through
buck and gain circuits, and low-pass filtered at a cut-
off frequency f. close to fi, the Kolmogorov frequency
(estimated via fr = U/2mn). The cut-off frequency is
therefore a function of the position behind the grid: it
varies from 5 kHz at x/M = 20 to 1.6 kHz at x/M = 80.
The signals were then digitized into a personal computer
using a 12 bit A/D converter at a sampling frequency of
2f.. The record duration was 52 s.
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Analytical considerations

In order to understand the physical significance of the
difference between the two terms of Eq. (2), we carefully
reconsider its derivation, as it is presented in [6]. We
start with the heat transport equation, which we first
write at point x,

00

iV = koV>0
ot + 4V oV<o,
and then at point x+r (with the variables at this location
being designated with a superscript +),

L A—— 249+
—— + U4 VT =kVTOT.

ot
After multiplying the first of these equations by # and
the second by 6, and adding them, one obtains

0

&(9#) — 2V (@00™) = 2koVE(06T).

®3)
Using the usual forms of the gradient and Laplacian oper-
ators [e.g. 6] for homogeneous and isotropic turbulence,
only the derivatives with respect to r, the modulus of r
will be used. If we also consider that the temperature
variance 8 decays behind the grid, and therefore retain
the corresponding term in Eq. (3), and use the fact that
(mainly because R, is constant) ((A#)?)/6' remains un-
changed with x (or time t) for any value of r, then, after
multiplying by r?, integrating with respect to 7 and di-
viding by r?, we obtain the generalized form of Yaglom’s
equation in decaying grid turbulence:

d

—(Au(A6)%) +2ko - ((A6)°) (4)
1 (7 ,0 2 4
= a(me) Yds = g(ea)n

where s is a dummy variable identifiable with the sepa-
ration.

The new term on the left hand side of Eq. (4) can be
interpreted as a ”source term” since it accounts for the
large-scale flow properties, and we therefore call it S.

Results and discussion

Figure 2 shows that the influence of this term is quite
important, since the balance between (4/3)r* and the
sum of the three normalized terms A* 4+ B* + 5™ is quite
good for all the scale range, underlining the fact that
the decay is crucial in this kind of flow. It also validates
the three-dimensional isotropy of the passive scalar field
in grid turbulence, even at moderate Reynolds numbers,
while it was sometimes argued that the observed depar-
ture from the ”four-thirds law” was mainly a consequence
of a lack of isotropy at moderate Reynolds numbers. The
same kind of analysis can be performed for the velocity
field [2], the additional term in Kolmogorov’s equation
being

_ U [T 40 2
Sy = 37"4/0 s 0x((Au) Yds.



Figure 2: Terms in the generalized Yaglom equation. ¢,
A, %, B*, A, A"+ B*,0,S*, A"+ B* 4+ 5" (e) is to be
compared with C* (solid line).

Figure 3: Terms in the generalized Kolmogorov equation.
Same symbols as Fig. 2.

Figure 3 shows that, for longitudinal velocity structure
functions, analyzed in terms of Kolmogorov’s equation,
the new term has the same kind of influence as that ob-
tained for Yaglom’s equation. However, Mydlarski and
Warhaft’s data, available for a large range of Ry between
99 and 448, allow an assessment of the influence of the
Reynolds number on the present analysis. Figure 4 shows
that for all Reynolds numbers, the new term is about one
half of (4/5)r" for r = L, where L is the integral length
scale (estimated here as L = 0.9u'®/(g) ), even though
larger contributions are obviously obtained for smaller
Reynolds numbers since the maximum level attained by
—(Aw?) is then significantly smaller than (4/5)r*.

It is also worth examining the limit trends, for very large
and very small scales, of our new relations. We first con-
sider the generalized Yaglom equation. For very large
scales, typically for r > L, —(Au(A#?)) tends to zero
and (A#?) tends to the asymptotic value of 26'?, so that
one simply obtains the well-known decay law (e.g. [4])
for the temperature variance.

On the other hand, for very small scales, a Taylor series
expansion for (A6?) must first be written,
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Figure 4: Ratio of the linear term 4/5r" and the source
term S, for the present velocity data and those of
Mydlarski and Warhaft, for various Reynolds numbers.
Present data, Ry = 70, ¢. Mydlarski and Warhaft’s data
: Ry =99, 0, Ry =134, 4+, Ry = 319, o, Ry = 448, *.
Arrows indicate the value of L* for each Ry (except for
R, = 134, for which L* has almost the same value as for
Ry =99).

@ = ((2Y o - L (280,

while the approximation

0

—((A0))

is valid for locally isotropic turbulence. After substitut-
ing the above expressions into Eq. (4), using the approx-
imation

Oou (06

~(au(a0)?) ~ (2 (a—)> ™)

and equating terms in 73, we obtain

=2 () k () @

which characterizes the decay of (g¢) behind the grid.

_ U d(&‘g)
15k0 dx

A similar development for (Au?) inserted into our gener-
alized Kolmogorov equation,

3 d 2 _ 4
—({(Aw)") + v ((Au)") + Su = =(e)r,
gives

U d(e)

ou\® *u\’
= —_ 2 ~ o . 1
35v dx <<0:v) )+ V<(8z2) ) (10)
This is the transport equation for (¢) or the enstrophy
(for homogeneous turbulence), which was first derived by
Batchelor and Townsend [1].

Therefore, our two generalized equations are compati-
ble with the known relationships for decaying grid tur-
bulence, while the ”classical” Yaglom and Kolmogorov
equations are not compatible, through their large scale
limiting behaviour, with the decaying energy character-
istic of grid turbulence. Further comments can be made



with regard to our generalized equations. Figures (5) and
(6) present, for the Yaglom and Kolmogorov equations re-
spectively, the contributions associated with the terms of
order r and order r® for the same data as for figures (2)
and (3). The budget equations considered at the order
r are obviously the same as those on figures (2) and (3),
but, at the order 73, the source terms in our generalized
equations account exactly - at very small scales, r* < 5
- for the variation in x of the dissipation rates (g¢) and
(e). This variation is the result of the ”subtle” balance -
at order r® - of the ”classical” A and B terms, a feature
which does not appear when only an order r balance is
carried out.

It is interesting to note that results we have recently ob-
tained in a channel flow [3] for Kolmogorov’s equation
show a physically similar result, namely that a large scale
term must be added in order to account for the flow spe-
cific properties of this flow, turbulent diffusion, which
balances at large scale the (¢) contribution. However, for
this flow, it was found that the assumption of local ho-
mogeneity had also to be relaxed, so that, when deriving
the generalized Kolmogorov equation from the Navier-
Stokes equations, spatial ”large-scale” derivatives needed
to be incorporated in the expressions of the gradient and
Laplacian operators.
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Figure 5: Contributions from the terms of order r and
order 7 in the generalized Yaglom equation. +, raw A*
data, - - -, raw B™ data, the line represents the source
term S*, e, sum A" + B* 4+ S*, O, normalized 7> relation
(7) approximating A, o, normalized r® relation derived
from (5) approximating —B, ¢, sum of the r* normalized
terms in relations (7) and (5) (which appears in the right
hand side of (8)).

Conclusions

We have demonstrated in this paper that Yaglom’s and
Kolmogorov’s equations, in their ”classical” form, can-
not be verified over the intermediate to large-scale range,
simply because they are not compatible with the kinetic
energy budget (which sets the value of (¢) in each type
of flow). This should not be a surprise since one should
never forget that () is also the rate at which energy is fed
into the flow at large scale (at least for equilibrium flows).
When the new terms (which only involve velocity second-
order statistics) are considered, experimental data are in
very good agreement with the generalized equations, so
that these equations can be used to determine accurately
the value of (¢}, even at moderate Reynolds numbers.
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Figure 6: Contributions from the terms of order r and or-
der 7% in the generalized Kolmogorov equation. Symbols
have the same meaning as in Fig 5.
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