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ABSTRACT

In a two-dimensional shear flow of shallow water, the
bottom friction relates uniquely the spanwise pro-
file of the undisturbed depth-averaged velocity to the
bottom topography. If the basic flow varies weakly in
the spanwise direction, the local analysis of stability
at every spanwise position gives the region of the flow
parameters, for which the classic hydraulic instability
due to the bottom friction cannot occur. In this re-
gion, the linear analyses of the waves scattering and
instability due to the lateral shear can be performed
effectively by means of the frictionless linearized equa-
tions if both the bottom slope and friction are equally
small.

In the absence of hydraulic instability, the waves
can be amplified only near the critical layers, where
their streamwise phase velocity equals to the veloc-
ity of the basic flow. Two physical mechanisms of
this amplification exist. The first one is similar to
that suggested by Takehiro and Hayashi (1992) for
a linear frictionless shallow water flow. The incident
and transmitted waves carry energy of opposite signs,
which results into increasing of the amplitude of the
reflected wave compared to that of the incident one.
This mechanism of over-reflection operates for any
combination of the flow parameters. The other mech-
anism is similar to Landau damping in plasma flows;
it is related to the energy exchange between the waves
and fluid particles at the critical layers due to the ve-
locity synchronism. It may lead to either additional
amplification or damping of the waves for different
flow conditions. In particular, its significance can be
reduced by stronger bottom friction.

If the basic flow has uniform potential vorticity,
Landau damping is negligible. Furthermore, over-
reflection occurs then without any exchange of en-
ergy between the waves and induced mean flow. If
the proper feed-back is provided by another critical
layer, the net over-reflection results into the forma-
tion of self-exited trapped modes, which can be inter-
preted as the global instability of a hypothetical one-
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dimensional state that is spatially developing and has
no region of local instability.

INTRODUCTION

The shallow-water approximation is based on the as-
sumption that the horizontal lengthscale of the flow
(e.g. the typical wavelength) is much larger than the
typical depth. It provides a useful reduction of di-
mensions in many hydraulic and geophysical applica-
tions. Thus, the vertical direction is eliminated from
the consideration by averaging the equations of mo-
tion over the flow depth. The shear stresses in the
horizontal plane result then into the friction at the
bottom. The instability that is caused by the friction
is often referred to as hydraulic; its most recognized
consequence is the formation of roll waves in steep
open channels and other hydraulic structures.

If the depth-averaged basic flow varies in the span-
wise direction, the other type of instability can oc-
cur (Satomura, 1981; Chu, Wu and Khayat, 1991;
Takehiro and Hayashi, 1992; Knessl and Keller, 1995;
Shrira et al., 1997). The instability mechanism is
based on the wave amplification near the critical lay-
ers, where the streamwise phase speed of the waves
equals to the local streamwise velocity of the basic
flow. In a wave scattering problem, the amplifica-
tion appears in the form of over-reflection—the am-
plitude of the wave reflected from the critical layer is
higher than that of the incident one. Strictly speak-
ing, the viscous analysis is required near the critical
layer. However, the instability can be efficiently pre-
dicted by pure inviscid theory if one treats properly
the singularity that may occur in the inviscid equa-
tions (Grimshaw, 1980).

For a linear shear flow of shallow water along a
frictionless horizontal plane, Knessl and Keller (1995,
hereafter KK95) obtained an exact analytic solution
for small disturbances and demonstrated that over-
reflection occurs for any combination of the flow pa-
rameters. In the present paper, we extend their result
to a more realistic flow of shallow water, for which the



bottom slope and friction are not negligible,. We uti-
lize the combination of the comparison equation tech-
nique with the matching of the WKBJ approximation
in the complex plane, which has been suggested by
Basovich and Tsimring (1984, hereafter BT84).

FORMULATION

The basic flow is a free surface stream of an incom-
pressible fluid (Fig.1). The depth of the basic flow
H (y) is measured normally to the free surface. The
vertical variation of the flow parameters is assumed
to be negligible, and it does not affect the depth-
averaged equations. The depth-averaged velocity of
the basic flow has only one (streamwise) non-zero
component U (y) > 0.

Figure 1: Flow geometry.

The governing equations are two-dimensional Saint
Venant shallow-water equations. The bottom friction
is accounted via the term 7 = Auf (Ju|) A=, where
A is a non-dimensional friction factor, u is the depth-
averaged velocity vector, and f (|u|) is an arbitrary
function such that f > 0 and f’ > 0. This form
generalizes some of ad hoc formulas that are often
used in applications (for references, see Yakubenko
and Shugai, 1998).

The flow depth is presented as

H (y) + h(y) exp (tkex — iwt),

and a similar decomposition is performed for the ve-
locity. Then, the equations of motion yield for the
basic flow

F~2tan (0) — 7 (H,U) =0, (1)

in which F' = Uy, [Hyypg cos (63)]_1"2 is the Froude
number.

LIMITS OF THE APPROACH

For U = H = 1, one can take fAL(y) = exp (ikyy),
and the linearized equations of motion lead to the
dispersion relation. From the relation and (1), one
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can shown that the flow is temporally unstable only
if

tan (8) > A[f (1) + 7 (WP 1 (1), (2

which is independent of k,. Furthermore, in the case
of instability, the dispersion relation reveals that dis-
turbances of infinitely short wavelength are the most
amplified. It may be argued that this fact contra-
dicts the long-wave nature of the shallow water ap-
proximation. The problem is resolved if the internal
lateral friction is taken into account in addition to
the bottom friction (Yakubenko and Shugai, 1998).
However, this requires other terms of higher order to
be retained. To avoid this complication, we assume
in the remainder that (2) is not satisfied.

The other important limiting case is the flow in a
horizontal frictionless channel (¢ = A = 0). Then,
the following equation for h (y) is obtained:

B — 8, [log (A?)] R’ + k2 (F2A% — 1) h =0,
(3)

in which ¢ = w/k, is the streamwise phase veloc-
ity, and A2 = (U — ¢)® H~!. Equation (3) is simi-
lar to those for shear flows of stratified fluids and of
compressible gases (BT84; Lindzen, 1988; Drazin and
Davey, 1977, and references therein). Since (1) dis-
appears, the depth and velocity of the basic flow can
vary independently.

Equation (3) is further simplified if the bottom is
uniform. In shallow water, this case was investigated
first by Satomura (1981). For H =1 and U (y) = v,
Takehiro and Hayashi (1992, hereafter TH92) have
investigated numerically how a wave packet interacts
with the critical layer, and KK95 have obtained an
exact solution of the wave scattering problem.

It must be noted that even in the frictionless case,
the velocity profile can be related uniquely to the bot-
tom topography if the entire flow is subjected to ro-
tation. The effect may be significant in many geo-
physical applications (see McPhaden and Ripa, 1990
for a review).

WEAK BOTTOM FRICTION
We assume that both the bottom friction and slope
are equally small in the following sense:

A€l, 9%=Acot(6) =0(1). (4)

The resulting equations for the basic flow and distur-
bances are the following:

H=y"FUf(U), (5)

' — 8, [log (A%)] B + K2 (y2A? = 1) h =0,
(6)



in which
N =U@-FUWfUE}™". @

Thus, in the leading order approximation, the prob-
lem is similar to that of the frictionless case. However,
the depth and velocity of the basic flow cannot vary
independently any more.

Equations (2) and (4) give that hydraulic instabil-
ity cannot occur if

Y>FQ+FOQF Q). 8

The other important restriction concerns the critical
layers y = %y., where the velocity of the basic flow
equals the phase speed of the waves. Equation (6)
has a singularity at ¥ = y.. As a result, its solution
has there a branch point. (Most general treatment of
the problem and an overview of related works were
presented by Grimshaw, 1980.) Therefore, the prob-
lem of choice of the proper branch arises. However,
the choice can be made easily if one keep in mind
that (6) is obtained by neglecting the friction terms.
Thus, the actual position of the singularity is given
by

| 8uT (H,U)
y=yc+%{—k;g,—'

} +0(X%), (9

where 8,7 (H,U) = O (). Hence, the solutions of
the reduced equation (6) at the real y-axis can be
matched around y. in the complex y-plane. Fur-
thermore, since 3,7 > 0, equation (9) shows that
the bypass must be taken in the lower complex half-

plane for k;U’ (y:) > 0, and in the upper one for
kU (ye) < O.

SCATTERING PROBLEM

The basic flow velocity is given by a monotonous func-
tion U (y) such that U (y — +o0) — Uz = const.
The corresponding bottom topography is given by
H = y?F2U?2. If the incident wave may come from
either direction (¥ = £00), the assumption U’ (y) >
0 entails no loss of generality. We assume further
that a critical layer occurs in the flow, and that the
basic flow varies weakly at the typical wavelength.
This weak variation is made gxplicit by introducing
U(Y), A(Y), and A(Y) = h(e~1Y) A1 (Y), in
which ¥ = e€(y —y.) and ¢ < 1. Equation (6)
takes then the standard form

R+ P(Y)h=0, (10)
~ - - L D
in which P = 72k + A~1A” — 242 (A’) , and

k2 = k2 (7-2]\2 -1). (11)

The scattering potential P (Y) has a second order
pole at Y = 0 and two zeroes Y] and Y5. Following
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BT84, we approximate it near the origin by a stan-
dard potential that provides the following general so-
lution in terms of Whittaker’s functions:

k2 (V) [C1Wiesja (8) + CoW_seya (-5)]
(12)

in which C} and Cb are arbitrary constants,
1 - & 3
k= 5iek” (0) [k:y ) K/ (0)] ,

and S (Y) = 2ic™! [ ky (£) dE.

The solution (12) breaks down near the points Y}
and Y3. If the WKBJ approximation is used, these
are simple turning points, and the standard WKBJ
matching in the complex plane can be utilized. This
implies an accurate choice of the branches of ky (Y),
since a scattering problem requires precise identifica-
tion of the incident and scattered waves. Thus, each
branch must be associated with a wave, for which the
direction of propagation must be determined uniquely
for the entire real ¥ axis. Since the problem must be
treated for Im (w) = 0 as a limiting case of that for
Im (w) > 0, a proper direction of matching can be
established unambiguously for each turning point.

If k; > 0, one has k.U’ (0) > 0, so that the
pole Y = 0 must be bypassed in the lower com-
plex half-plane. This case is mathematically similar
to the problem formulated by BT84. However, they
matched the singularity in the incorrect (upper) half-
plane (BT84, Fig.6, p. 245) and used incorrect values
of the Stokes multipliers. Therefore, we have revised
their matching procedure. The following reflection
and transmission coefficients are obtained:

|Rm|* =14 €728 4 (—1)™ 2rre=2dm (13)

|T|2 ~ e ] — rre2h 4 wne_z‘i?] . (14)

in which m 1 and 2 must be taken for
the left- and right-scattering, respectively, di 2

e |f0Yl'2 ky (Y) dY‘ > 1,and d = dy +dy. Equa-
tions (13) and (14) yield

| R —

IT|? > 1+ (—1)™ 2wke=2dm,

which generalizes the result of KK95.

For k; < 0, one has k,U" (0) < 0, so that the by-
pass must be taken in the upper complex half-plane.
It can be shown that the formulas for the reflection
and transmission coefficients can be obtained from
(13) and (14) simply by swapping first d; and dg,
and then R; and Rp.

OVER-REFLECTION vs LANDAU DAMPING
The potential vorticity of the basic flow and
waves are given @ ~U'H™! and ¢




(8zv — Byu — Qh) H™1, respectively. If the poten-
tial vorticity of the basic flow is uniform (Q' = 0),
one can show that the potential vorticity of the waves
g is conserved. Two important cases can be distin-
guished. In the first one, g is zero initially. Then, it
is zero at any moment of time (which excludes vor-
ticity waves but retains surface-gravity waves). This
case has been discussed in details by TH92. In par-
ticular, they have shown that over-reflection occurs
without energy (and momentum) exchange between
the waves and induced mean flow (the energy flux is
continuous across the critical layer). The excitation
of the transmitted wave of negative energy increases
the energy of the reflected wave compared to that of
the incident one, which in its turn results into increas-
ing of the wave amplitude, i.e. into over-reflection.
In equation (13), it is accounted by the term e~2¢
that is always positive. Furthermore, this mechanism
of over-reflection operates as well for non-zero )’ and
g, since (13) does not relay on any assumptions about
them. Thus, over-reflection can be explained as an
interaction between two waves carrying energy of op-
posite signs (Acheson, 1976; Craik 1985; Stepanyants
and Fabrikant, 1988; Shrira et al., 1997).

Possible direct energy exchange between the waves
and fluid particles due to the velocity synchronism
near the critical layer is often referred to as Landau
damping because of its similarity to that suggested by
Landau in plasma physics (for references, see Briggs
et al., 1970 and Stepanyants and Fabrikant, 1989).
Physically, it is related to the trapping of fluid par-
ticles (originally, electrons) whose velocities are close
to the wave phase speed between adjacent peaks. It
must be noted, however, that the actual trapping pro-
cess cannot be accounted completely by the linear
theory (for further discussion, see Briggs et al., 1970
and Craik, 1985). The waves interact efficiently with
those particles that have velocities from the interval
(¢ —6,c+6), in which 0 < § < 1. The difference
between the number of particles (per unit length in
the z-direction) that propagate faster and slower than
the wave can be expressed as

N 52Q’ (¥e) [U, (Ye) Q2 (yc)] = ) (15)

in which only the leading term is retained. Because
of the assumption U’ (y.) > 0, the sign of N coin-
cides with that of the gradient of the basic potential
vorticity.

If N > 0, the waves altogether receive energy due
to the interaction. (This extra energy is compensated
by the corresponding alterations of the energy of the
induced mean flow.) The opposite case is more spec-
tacular, since the waves carrying negative energy can
be amplified by transferring energy to the mean flow.
The reflection and transmission coefficients can be
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easily rewritten in terms of IV, since

k= gka 670" (4) Q4 .

To illustrate the effect of the bottom friction, we
consider the case f (U) = U; the corresponding law
of the bottom friction is called the Chezy formula, it
has been used in hydraulic practice for more than a
century. The instability condition (2) takes the cel-
ebrated form tan (6) > 4\. Thus, for weak friction,
the hydraulic instability is absent if v > 1/2. In Fig.
3, the reflection coefficient is shown for the following
velocity profile:

U W) =5 [Us + U+ (Us ~ ) tanh (e)] .

Thus, larger values of <y, and thus stronger bottom
friction, suppress Landau damping.

IRy
1.02

1.00

0.98 4

0.8 1.0 12 e

Figure 2: Right-reflection coefficient for tanh-
profile of the basic velocity (U— = 0.5, Uy = 2.5,
¢ =0.03, and k, = 0.06).

TRAPPED MODES AND GLOBAL INSTABILITY

The feed-back for the over-reflected wave can be pro-
vided by either a lateral boundary of the flow or an-
other critical layer. The net reflection can lead then
to the formation of the so-called trapped modes that
are eigenfunctions of equation (10) together with the
radiation conditions for y — =oo. For example,
two simple but important particular cases are a sub-
merged trough and ridge. In both cases, the scatter-
ing potential P (Y") can have two critical layers and
four turning points.

The eigenfrequencies are found from the quantiza-
tion relation. It can be shown that in the case of
over-reflection, some of these frequencies have posi-
tive imaginary part, thus providing instability (Ache-
son, 1976; Lindzen, 1988; TH92; KK95). In the
theory of stability of parallel flows, the quantization
relation is considered as the dispersion relation be-
tween the wavenumber k, and frequency w. Alter-
natively, k; can be treated merely as a parameter,



and the stability problem is considered for a fictitious
flow that is one-dimensional and spatially developing.
Then, ky (w,Y; k) presents the local wave number
and the local dispersion relation is given by (11). In
this approach, the eigenfrequencies w and the cor-
responding eigenfunctions A (Y;w) are called global
frequencies and global modes, respectively (more de-
tails can be found in Huerre and Monkewitz, 1990
and Yakubenko, 1997).

In recent years, the problem of stability of spatially
developing flows has attracted much attention in fluid
dynamics. One of the central questions in the studies
was how the local properties of the flow are related to
its global stability. In particular, Brevdo and Bridges
(1997) have demonstrated by means of a mathemat-
ical example that the presence of a region of local
instability is not necessary for the global instability.
In the mater of fact, the same conclusion is hidden in
a huge number of the existing stability studies. For
example, dispersion relation (11) indicates no local
instability. (Moreover, we have assumed the region
of the flow parameters, for which the local hydraulic
instability would never occur even if we retained the
terms due to the bottom friction.) Nevertheless, some
of the frequencies may have positive imaginary parts.
As a conclusion, local instability is not necessary, at
least formally, for the global instability of a spatially
developing state. To our knowledge, though, a ques-
tion whether over-reflection can occur in a real one
dimensional flow remains open.

Finally, it must be noted that the linear theory pre-
sented has limitations, and the wave transformation
near the critical layer may involve complex non-linear
phenomena (further discussion can be found in Craik,
1985; Grimshaw, 1994; Shrira et al., 1997).
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