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ABSTRACT

Numerical techniques are used to investigate the role
of entrainment and mixing in exchange flows through
contracting channels. The use of numerical methods
allows several of the simplifying assumptions inherent
in two-layer hydraulic theory to be relaxed, at least
for idealized situations. The results indicate the im-
portance of mixing in the creation of an interfacial
layer of intermediate density that carries a signifi-
cant fraction of the horizontal transport and alters
the scalar transport relative to two-layer predictions.

INTRODUCTION

Flow between two basins of different fluid densities
is a long-standing problem of fundamental interest
in geophysical fluid dynamics. Such flows occur fre-
quently in nature, for example in straits, in channels
between deep ocean basins, or between lagoons and
coastal seas. Here, we investigate bi-directional ex-
change flows through a simple contracting channel
via numerical simulation.

Theoretical understanding of exchange flows is
based largely on equations describing the dynamics
of steady, inviscid two-layer flows through idealized
channels with slowly varying cross-sectional area (see
e.g. Armi and Farmer, 1986 or Lawrence, 1990).
Though two-layer hydraulic theory has proven ex-
tremely useful, a serious limitation to its applicability
is the neglect of entrainment and mixing between the
oppositely flowing water masses. The simulations dis-
cussed here are intended to illustrate the influence of
vertical entrainment and mixing on the dynamics and
horizontal transport of simple exchange flows.

NUMERICAL SIMULATIONS

The equations of motion for a density-stratified fluid
are solved numerically over an orthogonal-curvilinear
grid conforming to the variable width channel side-
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walls. The simulations discussed here were conducted
for the 120m long by 10m deep channel shown in Fig-
ure 2. The resolution of the numerical mesh was 129
X 17 X 65 grid points in the stream-wise x, spanwise
y and vertical z directions respectively. Though the
horizontal spacings are variable in curvilinear coordi-
nates, this corresponds to nominal grid spacings of 93,
60 and 15cm. The numerical algorithm incorporates
a fourth-order compact scheme for spatial differen-
tiation, third-order Adams-Bashforth time stepping
and a multi-grid projection method for pressure. The
simulations were run using a closure scheme based on
the Smagorinsky model, modified for stably-stratified
flow.

The simulations are conducted in a variable-width
channel with vertical, free-slip sidewalls. The free sur-
face is treated as a stress-free rigid lid. Simulations
were run both for maximal and submaximal exchange
flows with a net barotropic component. The magni-
tude and direction of the barotropic transport was
controlled by specifying a barotropic pressure drop
across the channel. The maximal exchange cases pre-
sented here were computed with a free-slip bottom
boundary. A no-slip condition was used for the sub-
maximal case. At the solid walls, adiabatic condi-
tions are prescribed for density. At the up- and down-
stream computational boundaries, the density of the
inflowing fluid is prescribed to match the assumed
values in the exterior reservoirs. Viscous sponge lay-
ers are employed within 20m of these open bound-
aries to minimize spurious reflections from imperfect
treatment of the open boundaries. The solutions are
analyzed only within a “test” section excluding these
sponge layers. Solution quality is routinely monitored
by assessing the balance of the potential energy equa-
tion and comparing the magnitude of the residal to
the dominant transfer rates as shown in Figure 1(b).
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Figure 1: Components of the a) kinetic energy bal-
ance and b) potential energy balance for a simulation
of maximal exchange with ¢, = 0.59.

Figure 2 shows the channel geometry and represen-
tative velocity and density “interfaces” for simulated
and predicted exchange flows. The simulations were
run as lock-exchange initial value problems with a
density difference of 0.5 kg/m?>.
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Figure 2: A comparison of the predicted and sim-
ulated interface heights as a function of streamwise
position. The middle panel is typical of all the maxi-
mal exchange simulations. The lower panel shows the
results for a submaximal exchange flow.

Figure 3 shows the time evolution of a maximal ex-
change simulation as it evolves toward a quasi-steady
state. Here the ratio of right- to left-ward transport
qr is less than 1.

RESULTS
To permit comparison between the model results
and inviscid theory we time- and cross-channel av-
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Figure 3: Snapshots of the velocity vectors, overlain
with contours of the density field, for various times
during the evolution of the initial value problem to
steady state. For this case ¢, = 0.55. Simulation
data are taken from the mid-channel, vertical ¢ — 2
plane.

erage the simulated fields once a quasi-steady state
is achieved. For the purpose of forming layer Froude
numbers, the zero isotach of the averaged flow is used
to decompose the flow into two layers. Alternatively,
the mid-isopycnal Ap/2 can be used to separate the
flow. Note that these two surfaces are not co-located
in the domain (Fig. 2). We use the zero isotach to
define the layers because this definition seems more
consistent with the spirit of the theory, i.e. two lay-
ers of fluid flowing in opposite directions; though the
choice is somewhat arbitrary.

Comparison of the model results with the hydraulic
predictions on a Froude number plane demonstrates
that the addition of mixing and dissipation does not
fundamentally change the maximal exchange solu-
tions (Fig. 4a-c). Two supercritical regions bound
the central subcritical region, satisfying the defining
requirement of a maximal exchange flow. Quantita-
tively, however, much more of the flow is suberitical
than predicted. For example, when ¢, = 1 inviscid
theory predicts that the two control points collapse
to a single point and that the flow is essentially su-
percritical everywhere. The simulations show no such
coalescence of the controls and, in general, simulated
Froude numbers are systematically smaller than pre-
dicted.

A more careful examination of the continuous fields
suggests a qualitative change in character of the flow
as a result of entrainment and mixing between lay-
ers. The velocity and density profiles shown in the
upper panels of Figure 5 suggest the flow might be
more appropriately described by three-layers, with
two bounding layers of approximately uniform prop-
erties being separated by a finite-thickness interface.
Marked on the panels are the upper and lower limits
of the interface layer, defined as a 0.05 kg/m? differ-
ence from the inflow densities. Overlaying these inter-
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Figure 4: Simulated (solid) and predicted (dashed)
solution curves plotted on a Froude number plane
for a) ¢- = 0.59 b) ¢- = 1.02 ¢) g, = 1.92 and d)
gr = 1.73. In the shaded region of the Froude number
plane the flow is subcritical. Dots along the curves
mark approximately 6 m intervals along the channel.
Plots a-c are maximal exchange solutions and plot d
is a submaximal exchange solution.

faces on contours of the along-channel velocity field
(Fig 5b) shows that the interface layer is thinnest in
the contraction and thicker to either side. It is also
apparent that the zero isotach is not centered in the
interfacial layer; rather, the interface is moving with
the lower layer to the left of the contraction and with
the upper layer to the right.

Although two-layer inviscid theory gives reasonable
predictions of the layer transports, even when fric-
tional effects are included , it provides no guidance
on rates of entrainment and mixing between the lay-
ers. Bray et al (1995), in their analysis of observa-
tions from the Strait of Gibraltar, emphasize the im-
portance of the interface in carrying horizontal trans-
port, noting that its existence implies strong verti-
cal exchange between layers. The computed solutions
were time and cross-channel averaged after the flows
reached quasi-steady state. The transports and the
change in transport in the streamwise directions were
used to quantify the exchange between layers. The
results are represented schematically as transports in
and between layers at the ends and middle of the
channel (Fig. 6). In each plot the transport values
have been normalized by the maximum layer trans-
port. A number of features are common to all cases.
Entrainment into the interfacial layer is preferentially
from the faster of the bounding layers. In the vicin-
ity of the hydraulic controls, this is the thinner of the
two layers. The rates of entrainment are large, being
as high as 30% of the transport of the faster layer,
and as much as 20% of the slower moving layer. In
the case of submaximal exchange the values are even

33

10 10—
1

=

3
E

|
|
|
|
{
/
Bl e

Z (m)

9

|
|
1
¥ |
\ 1
1 |
1 |
1 |

o
\
/
/
/
/
n..

0 0
42 0 02 04 06 02 0 020406

U(m/s) ----p(kg/md)

02 0 02 04 06

Z (m)

9
(m)

Figure 5: (above) Profiles of U and p from the three
streamwise positions marked with dashed white lines
on the contour plot. Horizontal lines mark the posi-
tions of the upper and lower bounds of the interfacial
layer. (below) Contours of U overlain with the up-
per and lower boundaries of the interfacial layer for
gr = 1.92.

more extreme, with as much as half of the transport
carried by the upper layer being entrained into the
interfacial layer.

We next consider the effect of bottom friction on
the steady solution by changing the bottom boundary
condition from free- to no-slip. Early in the tempo-
ral development there are obvious differences in the
character of the flow. Instabilities associated with
the propagating bores are more frequent and more in-
tense than for the maximal exchange runs. In steady
state the flow strongly resembles the submaximal ex-
change flows in Armi and Farmer (1986). For the
case shown, with g, > 1, the interface is nearly flat
and at mid-depth to the left of the contraction, and
displaced upward to the right (Fig. 7). Where the up-
per layer is thinnest, the interface is extremely active
with near continual formation of billows that grow
as they are advected downstream. Velocities in the
lower layer are approximately uniform along the chan-
nel, whereas velocities in the upper layer peak down-
stream of the contraction. Shear stress, estimated as
K, (0U/8z) (not shown), is enhanced in the bottom
boundary layer, though the bed stress is less than the
interfacial stress associated with the billows down-
stream of the contraction.

Because of the obvious change in flow regime, we
compare this simulation with hydraulic predictions
for submaximal exchange flow. The predicted inter-
face (see Fig. 2) is flat to the left of the contraction,
rising through the throat. The upper layer thins and



——
—_— —_— e Y
-

Figure 6: Schematic representation of the horizontal
and vertical transports in a three-layer system for a)
gr = 059 b) ¢ = 1.02 ¢) ¢ = 1.92 and d) ¢, =
1.73. Arrows show the magnitude and direction of
the transports. Magnitudes have been normalized by
the maximum transport in each panel.

supercritical flow is predicted to the right of the con-
traction. This is a reasonable qualitative represen-
tation of the simulated flow. The prediction corre-
sponds well with the simulated interface height to the
left of the contraction, but in contrast with the pre-
dictions, critical conditions occur only briefly and well
downstream of the throat. (see Figure 4 (d))

CONCLUSIONS
The net transport in the interfacial layer is always
away from the throat of the contraction. Although
the flow within the layer may be bidirectional in
places, the mean transport is in the same direction as
the thinner, faster moving layer. The fraction of the
transport carried by the interface is typically large,
being equal to or greater than the transport carried
by the bounding layer that is moving in the same di-
rection. This indicates that more than half of the
fluid moving away from the contraction has under-
gone mixing with the opposing stream or, to a lesser
extent, is recirculating fluid from the slower moving
layer. The one exception is the submaximal exchange
case in which there is very little transport to the left
of the contraction. The absence of a virtual control
results in a stable flow upstream of the contraction
with relatively little fluid entrained from the bound-
ing layers.

The existence of a net (cross-channel averaged)
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Figure 7: Isopycnals and subsampled velocity arrows
in the center-channel plane for submaximal exchange
in approximately steady state. Note the quiescent
interface to the left of the contraction and the active
billowing to the right.

flow, i.e. g, = 1, leads to maximum entrainment
on the downstream side of the contraction (to the
left when g, < 1 and to the right when ¢, > 1).
The interface carries less than half of the transport
downstream of the contraction, but as much as 2/3
of the transport on the upstream side for the maximal
exchange cases.

The interlayer transports can be interpreted in
terms of mixing and recirculation. For example, con-
sider a passive tracer C' entering in the lower layer in
Fig. 6a. Before passing through the contraction 15%
of the flux of C' would be lost to the interfacial layer
and recirculate out the right end of the channel. Of
the 85% passing through the contraction, about 30%
would be diluted by mixing with overlying fluid, and
the remaining 55% would leave the left end of the
domain unaltered.
bers are fairly typical, in that roughly half the fluid
in a bounding layer that at some point is supercriti-
cal is lost to the interfacial layer. As such, this sug-
gests mixing is of considerable importance in defining
the circulation and streamwise tracer transport in hy-
draulically controlled flows.

In our simulations, these num-
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