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INTRODUCTION

Direct Simulations (DNS) has been used to investigate
the kinematics of turbulent boundary layers, and to
demonstrate  spatio-temporal relationships  between
various structures in turbulent boundary layers,
population and three dimensional character of the types
of vortical structure as reported in Refs.1 and 2. These
turbulence structures interact and change their shapes
with time. Although DNS yields accurate data, the
physics of the turbulence cannot be understood through
simple observation of the data. This is also true of
experiments. To deepen understanding of turbulence, it is
necessary to analyze the data.

In the present paper, the expression of Navier-Stokes
equations is changed by adding complementary variables
and by using the convolutions of kernel functions and
these complementary variables.

As the results, equations in integral forms
corresponding to N-S equations are derived. These
equations do not include the derivatives of pressure and
velocity. The kernel functions are selected as Gaussian,
Bessel and delta functions, which may have the
interesting functional features in the analysis of turbulent
boundary layer.

CONCEPT OF THIS APPROACH

Considering MAC method, generally used to obtain
the solutions for incompressible Navier-Stokes equations,
the solution procedure can be expressed as a block
diagram depicted in Fig.1-1. It is obvious that the
diagram consists of the solution processes of linear
partial equations for pressure p and velocity u, and some
complementary feedback processes (; complementary
equations for complementary variables g and f
corresponding to p and u respectively), which explicitly
represent the nonlinearity of Navier-Stokes equations.
Therefore, if pressure and velocity can be expressed in
integral forms from theePoisson equation for pressure
and heat equations for velocity, we can obtain the
simultaneous equations for pressure, velocity and
complementary variables in integral forms for Navier-
Stokes equations. For the purpose, we utilize the results
on multi-dimensional linear partial differential equations

475

in Ref.3 to investigate the integral equations for pressure
and velocity. These linear partial differential equations
are rewritten as a sum of integrals using Fourier and
Laplace transforms fundamentally, and the integrals are
given as convolutions of known kernel functions and
complementary variables. Complementary equations
contain the derivatives of p and # , which can also be
rewritten as the convolutions of partial derivatives of the
kernel functions and variables. Finally, equations in
integral forms for N-S equations are introduced with
none of partial derivatives of pressure p and velocity # .

INTEGRAL EXPRESSION FOR PRESSURE

Applying spanwise Laplace transform and the inverse
transform under the spanwise periodic boundary
conditions to the Poisson equation for pressure p, the 3
dimensional (below D) Poisson equation can be rewritten
as a sum of infinite series of 2D Poisson equations as
shown in Ref.3. One 2D Poisson equation can be
rewritten in a integral form, using 2D Laplace transform
in spanwise direction (z) under the convergent conditions
as described in Ref.3. We named the integral as pe .
Remaining equations can be rewritten in integral forms
by Fourier transform in streamwise direction (x) and
Laplace one in the direction normal to a wall (y) under
the same convergent conditions, respectively (see Ref,3).
The sum of these integrals is referred to p¢. The
boundary position in x is determined at x=-L, where L is
a large value comparing the boundary layer thickness.
This is simply because it is convenient for setting the
region of Laplace transform and to that of Fourier
transform.  Selecting the boundary position x=-L,
Laplace operator u in x is replaced with u+L. Then
pressure per and p¢ are given as shown in Eqn.(1-1).

pe  involves a complex function of unknown
complementary variable g as g(x-e,y+i(®+L),z) (see
Fig.1-1), where i is an imaginary number and ® is a
integration variable. If g is given locally from several
point data with polynomial approximation as Eqn.(1-2),
g(x-¢, y+i(*+L), z) becomes Egn.(1-3). Egn.(1-3)

consists of terms of (y+i(s+L)) ™, where m is an integral



number specified arbitrarily. These terms mean the
revolutionary changes of a complex number y+i(e+L) in
a complex plane. And the real part of the sum of these
terms expresses an irregular value, if © is selected as an
arbitrary real value. As a integration variablee is an
arbitrary real value in the range [0,x] in this case, Eqn.(1-
3) provides fluctuating values. Hence, pa has the
possibility to create some fluctuation in x-y plane.
Spanwise periodic boundary condition restricts such a
fluctuation in x-y plane only. However, similar
fluctuation may occur in y-z and x-z planes, because the
periodic boundary conditions of these fluctuations are
difficult to be defined strictly. Although DNS uses the
spanwise periodic condition due to the limited storage of
computers, this condition is not exact mathematically.
Based on this consideration, we adopt spanwise quasi-
periodic boundary condition. This means periodic
conditions for pressure except for fluctuating pressure in
y-z and x-z panes, and free boundary conditions for
fluctuating pressure in y-z and x-z planes. Under the
quasi-periodic boundary conditions, two types of
fluctuating pressure pg in x-z plane and py in y-z plane

should be added into Eqn.(1-1).

INTEGRAL EXPRESSION FOR VELOCITY

To obtain the integral expression for velocity, we need
to obtain kernel functions on heat equation for velocity
vector # . The inverse Fourier transform in x and usual
inverse Laplace transforms in y, z and time t are
employed. Easily, the integrals uf ,ua,ula and wu: are
obtained as shown in Eqn.(1-1), where f ,ax, aix and
uor means a complementary vector, the boundary
velocity, the boundary acceleration and the initial
velocity distribution, respectively.

INTEGRAL EXPRESSION FOR INCOMPRESSIVE
NAVIER-STOKES EQUATIONS

Finally, the equations in integral forms for p and u
described above are obtained as a sum of convolutions of
known kernel functions and unknown variables p and % .
Complementary equations for g and f contain the partial
derivatives of the above p and # . But these derivatives
can be rewritten as the partial derivatives of the
convolutions, and become the convolutions of partial
derivatives of known kernel functions and unknown
variables.

Then simultaneous equations in integral forms
corresponding to incompressible N-S equations can be
obtained as Eqn.(2-1), which does not include the partial

derivatives of variables &, p, f and g, and needs

only to calculate many integrals. These integrals can be
divided into three types. The first type has a kernel
function represented by Rprin Egn.(I-1), which
expresses the characteristics as Gaussian distribution.
The second one has a kernel function for the propagation
of the pressure, and it rapidly decreases with distance,
expressed as a sum of Modified Bessel functions of
second kind denoted as Hfr in Eqn. (1-1). The third
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one expresses as a delta function, which corresponds to a
transform from a real function g(x,y,z) to a complex

function as g(x—¢,y,z+i(p + L))
8(x—9,y+i(p+L),z) or g(x,y —¢,z+i(¢p + L)) -

Using variables #, p, f and g, boundary
conditions @x, @lx and ax, initial condition Hor, and
the above three types of kernel functions, the analytical
flow chart of the simultaneous equations for the
incompressible N-§ equations is expressed as shown in
Fig.2-1. Fig.2-1 shows a hierarchy of wvariables,
measurable and physical variables in the upper part,
complementary and boundary ones in the middle, and
functional ones in the lower part. Arrows among these
variables mean the corresponding transforms. Dashed
lines correspond to the process to generate fluctuating
pressure. Mixed length dash lines show smoothing
process with Gaussian type of kernel functions. After the
reputation of the arrows among these variables,
convergent solution may be obtained.

Since kernel functions can be thought to play some
roles of spatio-temporal filters on pressure p and velocity
u , the estimation of these functions would be connected
to the observation process for DNS or experiments.
Therefore, it is useful and important to investigate the
kernel functions referring to the various structures
visualized in DNS results.

FLUCTUATING PRESSURE TERMS

Here the fluctuating characteristics of pressure is
investigated, based on the mathematical expression of g.
As shown in Figs.1-1 and 2-1, g consists of two terms.
One is trace(d/dx-dit/ox) and the other is

(-D/Dt+1/Re)Vii . The latter may be treated to make

smaller effect on the fluctuation than the former because
of keeping a conservation equation Vi =0. Expressing
the former as gr, the transform of gr with a delta type

of kernel function becomes as Eqn.(3-1). Eqn.(3-1) is
expressed as a sum of e integrals of the products of
velocity gradients. One of the components, for example,
becomes as Eqn.(3-2), which consists of four products of
exponential and sinusoidal functions. The other
components can be similar as Eqn.(3-2), and the integral
of gr is expressed finally as a sum of 152 integrals.

These e-integrals can be solved mathematically, and
become integrals of which variables are f, ax,

alx and uor . From the similar procedures, fluctuating
pressure pp and py can be expressed respectively as a

sum of about one hundred of integrals. These sums
would result in fluctuating phenomena. From Eqn.(1-1),
it is apparent that vectors Vpa ,Vpg and Vpy are zero
components in spanwise z, in streamwise X and in
perpendicular to a wall y. Then these fluctuating
pressures are thought to have their own constant
coordinates, and have the possibility to relate to vortical
structures of pressure in turbulent boundary layer
visualized in Ref.1 as these vortical structures have their
specified directions of the core. Then it seems to be
important to deepen the study of the relations among



these fluctuating pressures referring to DNS results.
These will be our future work.

CONCLUSION

The integral expression for incompressible N-S
equations were derived analytically, by reconstructing N-
S equations with linear partial differential equations and
complementary equations. The integral equations
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Fig.1-1. Block diagram for Navier-Stokes equations

for linear partial differential equations are obtained,
employing multi-dimensional Fourier-Laplace

transforms under spanwise quasi-periodic boundary
condition and convergent restrictions. Using the solutions
as kernel functions, complementary equations can be
expressed in integral forms.

It was classified that there are three kinds of kernel
functions; Gaussian, Bessel and delta functions. It was
shown that these analytical expressions would give some
insights to investigate turbulence structures within
boundary layers.
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Fig.2-1. Calculating flows of Navier-Stokes equations in integral form
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