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ABSTRACT

This paper presents preliminary results from a numer-
ical simulation of a vortex roll-up in front of a square
piston moving in a square duct. The numerical algo-
rithm utilises the well-known fractional-step method
to solve the full viscous incompressible Navier-Stokes
equation. A staggered grid with 64 X 64 resolution
and appropriate boundary conditions were used to
simulate the flow inside a square cavity. The velocity
vector fields, vorticity contours of the flow field and
streamline patterns, along with other relevant plots
are presented for flows with Re = 2500 and a brief
analysis of these results is provided.

INTRODUCTION

This study has been motivated by the work of Allen
(1996) who performed an extensive experimental
study into the formation of vortex sheets close to the
junction of moving surfaces and successfully extended
the results of Tabaczynski et al. (1970). Tabaczynski
et al. (1970) observed a vortex roll-up structure, us-
ing a circular piston to create a moving plane with re-
spect to circular duct walls. Analytical solutions were
then postulated which successfully described the col-
lapse of the non-dimensionalised experimental data.
A diagram of a typical vortex roll-up structure ob-
tained by Allen (1996) is as shown in Figure 1.

Figure 1: Vortex roll-up from experiments con-
ducted by Allen (1996), Re = 2446,¢ = 50s

Allen (1996) extended these analytical solutions
and classified three distinct regions of the vortex be-
haviour which are dependent on the Reynolds Num-
ber of the vortex.

A point vortex model was also developed by Allen
(1996) which provided a locus of solutions which were
found to be approximately similar to experimental
data. A continuous vortex sheet model was then
developed which assumed the sheet scales in a self-
similarity behaviour. This allowed the utilisation of
the Birkhoff-Rott equations to be transformed into
an integro-differential equation. This model success-
fully produced a vortex sheet shape similar to that
observed from experiments.

This paper thus serves to introduce a numerical
method to study the development of the vortex roll-
up in front of a moving piston.

NUMERICAL ALGORITHM
It is a well known fact that the fractional step method
is an efficient method to solve the time-dependent
viscous incompressible Navier-Stokes equations. This
method is used here to solve the full two-dimensional
Navier-Stokes equations in primitive variable form to
provide a numerical solution to the corner flow prob-
lem. The method used is based on the work intro-
duced by Chorin (1969) and Kim et al. (1985), and
utilises a staggered grid method which was introduced
by Harlow ef al. (1965) to represent a finite-difference
representation of the Navier-Stokes equations onto a
square cavity, with the appropriate boundary condi-
tions.

The Navier-Stokes equation for two-dimensional
flow is as shown below together with the continuity
equation:
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Here, z and y are the spatial coordinates and u and
v are the velocity components respectively, with Fe
being the Reynolds number and p being the pressure.

Rewriting Eq.(1) in vectorial form and applying the
fractional-step method yields the following:
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where
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D is the divergence operator, V is the gradient oper-
ator and P is a scalar proportional to pressure. 4"t}
and 4" are velocities at times {+At# and ¢ respectively
while At is the incremental time step, which is set to
0.1 here. @ is known as the intermediate velocity
and can be computed from Eq.(5). This computation
forms the first-half step of the fractional-step method.

By taking the divergence of Eq.(3) and utilising
Eq.(4), the following can be obtained:

(6)

This is effectively a discrete Poisson equation for

v2 (Pn'l-l) - Ait_D(ﬁ-h)

pressure, and requires the incorporation of all veloc-
ity boundary conditions. By means of a transforms
method, used by Kim el al. (1985), Eq.(6) can be
solved for P"*! by cosine-transforming both sides of
Eq.(6) and solving for the tridiagonal system of equa-
tions using a simple inversion method of tridiagonal
matrices.
back into physical space, providing the values of pres-
sure at each node on the staggered-grid.

These values are then cosine-transformed

These pressure values are then substituted into
Eq.(3) and the velocity of the flow at the next time
step can be computed, forming the second-half step
of the fractional-step method.

GRID DEPENDENCE OF SOLUTIONS

The accuracy of the numerical scheme was checked
by examining the grid dependence of the solution.
This was done by refining the grid to a 128 x 128
grid. No significant difference in the solutions were
obtained suggesting that the solutions were indepen-
dent of grid size.

Preliminary results of the 64 X 64 computation is
presented here as work on the 128 x 128 computation
in still continuing.

PRELIMINARY RESULTS
To simulate a piston moving from left to right through
a square piston duct, the upper and lower boundaries
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were set to move in the left direction. The computed
velocity vectors is as shown in Figure 2, while Figure
3 shows the calculated trajectory of the vortex core.

HER1T

Figure 2: Velocity vectors of the simulated flow
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Figure 3: Trajectory of the vortex core for Re =
2500 and Re = 5000

In Figure 2, the vortex roll-up phenomena is ob-
served at the corner junction of the moving surfaces
clearly. Note that this figure is at the last time step
of the simulation, namely at { = 3.801. From each
figure generated at each time step, the position of
the vortex core can be measured. This is done by
examining an enlarged version of the estimated core
location of the vortex and approximating its position.
Simple calculation were then used to scale the loca-
tion of the core correctly, with respect to the scale of
the diagram. Nevertheless, this method will require
refinement in future works.

Figure 3 shows the trajectory of the vortex core for
Re = 2500 and also superimposed is a later simula-
tion for Re = 5000. These results show good agree-
ment with experimental results reported by Allen
(1996). Errors in determining the location of the core
is approximately 1%, which is reasonable.

Figure 4 shows the contours of the vorticity of the
flow field at the last time step, £ =.3.801 and shows
a vortex roll-up, with vorticity concentrated at the
vortex core. Allen (1996) has mentioned that the cen-
ter of vorticity would provide an accurate description



Figure 4: Vorticity contour of the flow field

of the position of the vortex core. However, a suit-
able experimental method to determine the region of
maximum vorticity in a typical flow field is still being
investigated.

Observations of the coloured version of Figure 4
clearly show the presence of secondary vorticity in
the flow. This secondary vortex is located between
the primary vortex system and the left boundary of
the cavity. A clearer indication of this secondary eddy
can be seen if a streamline pattern of the flow field is
plotted.

A typical streamline pattern of the flow field is as
shown in Figure 5 below:

Figure 5: Streamline pattern of the flow field

Observations of Figure 5 again show a secondary
vortex formation between the surface of the moving
piston and the primary vortex roll-up. The strong
tendency of the boundary layer on the wall of the duct
to separate and roll-up into the vortical structure can
also be clearly seen.

Figure 6 shows the velocity profile across the center
of the cavity at the start and end of the simulation,
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namely at £ = 0.001 and ¢ = 3.801.
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Figure 6: Velocity profile across the cavity at the
first and last time step for Re = 2500

Burggraf (1966) suggested that the structure of
flows in a primary eddy can be shown most clearly by
a graph of the velocity profile across the eddy. This
was done by examining the u velocity component at
r = L/2,i.e. the middle of the cavity.

It can be observed that at ¢ = 0.001, the velocity
profile is approximately flat across the entire cavity
with the exception of the two horizontal walls which
is moving in the left hand direction. However, at
the last time step ¢ = 0.3801, a maximum velocity
exists and is located at y = L/2. The point where
the velocity is zero may be a good estimate of the y
location of the core of the vortex. However, further
investigation is required to verify this.

FUTURE WORK

From the preliminary results obtained, it can be noted
that the numerical algorithm provides an alternative
description of the flow at the corner junction of mov-
ing surfaces. Numerical simulations have shown the
existence of a secondary vortex, located between the
primary vortex and the moving piston wall.

Allen (1996) has mentioned that the presence of
secondary vorticity on the piston face prevent the pri-
mary vortical structure from scaling in a self-similar
way. This was observed from experimental studies
conducted. The inviscid model proposed by Allen
(1996) does not incorporate this secondary vorticity.

Experimental studies have been proposed to fur-
ther study the validity of the simulations, on the ex-
istence of this secondary vortex. In the work of Allen
(1996), dye was introduced into the flow at the junc-
tion of the moving piston and the stationary wall.
Lighthill (1963) has suggested that in incompress-
ible uniform density flows, all vorticity is generated
at solid boundaries. Thus, if dye is introduced into
the fluid at the location where vorticity is generated,
the vorticity would be marked by the dye until vis-




cous diffusion causes the vorticity to be diffused away
from the dye.

By introducing dye carefully on both the duct wall
and on the piston face a more accurate description of
the mechanisms involved in the vortex roll-up may be
achieved.
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