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ABSTRACT

This study presents a concise mathematical model that
accounts for sea-anchor soaring, a special flight technique
used by sea birds, in particular storm petrels.
Conventional wing theory is used to reveal the mechanics
of sea-anchor soaring. The feasibility and existence of an
equilibrium are summarized by formulae giving the wind
velocity criteria. The stability of the equilibrium is also
revealed: among two possible equilibria, the equilibrium
at the very slow velocity to water is shown to be stable.
Numerical results show the following: sea-anchor soaring
is almost always stable; foot-web size regulates the size of
a bird using sea-anchor soaring at low velocities to water.

INTRODUCTION

Storm petrels are small sea birds. Like St. Peter, who was
described as walking on water, storm petrels are often
observed "walking" on the sea surface just before a storm
arrives, That is why they are called storm petrels. In
reality they soar against the horizontal wind and seek food
on the water surface, as they dabble in the water. This is
called sea-anchor soaring (Alexander, 1992). The
feasibility of this type of soaring was experimentally
studied by Withers (1979), but there has been no deeper
study of this flight technique since. From the mechanical
point of view, however, it is necessary to show the
feasibility of the equilibrium, its existence and stability.
My study focuses on these points based on conventional
wing theory. If the aim of soaring is to save energy during
foraging, then this flight technique must be stable.
Otherwise a bird would use energy to sustain the required
flight conditions. Thus consideration of the stability of
the equilibrium is necessary to discuss the storm petrel's
strategy.

THEORY
Mathematical model and basic equations
Without loss of generality the relation between air and
water can be described by the situation that the wind
blows at speed U over still water. If the water has a
current, the following analysis holds true by treating U as
the relative velocity of an air particle to a water particle.
Figure 1 shows schematically the equilibrium of forces
acting on a bird soaring against the horizontal wind with
the constant speed U, with webbed feet in the sea at the
speed V to water. Note that ¥ is in the same direction as
the horizontal wind. The opposite situation is nothing but
a variation of take-off, therefore we are not interested in
that case. In steady-state soaring the aerodynamic lift L is
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in equilibrivm with the bird's weight W, while the
aerodynamic drag D balances with the hydrodynamic
resistance R. Hydrodynamic lift may act on feet, but it is
usually negligible. In this way a storm petrel can soar
without an up-draft (Withers, 1979). We shall disregard
the equilibrium of moments, because it is not essential to
our discussion on soaring mechanics.

Lift, L, and drag, D, can be written in the following
forms:

L=LpsU-vFc,, )

D=1p,50-vfcp, @

where 05, S, Cr, and Cp denote the air density, the wing
area, the lift coefficient, and the drag coefficient,
respectively. According to conventional wing theory, the
drag coefficient Cp of a wing can be written in terms of C
to the second order:

Cp =Cpo +kCi*, 3)
where Cpo is Cp at C;=0; k is a coefficient depending
mainly on wing geometry. The second term on the right-
hand side of (3) is called induced drag.

On the other hand, the hydrodynamic resistance R is
given by

R=1p,4v7Cg, )]

where oy, A, and Cr denote the water density, the total
web area of two feet, and the resistance coefficient,
respectively. In this expression we neglected interaction

of two feet.  For brevity of manipulation we shall
introduce the following non-dimensional quantities:

o = (p.SCpo )/ (uACR), )
and

K =k/Cpg . (6)

Figure 1 : Schematic diagram of sea-anchor soaring.



We shall also define non-dimensional velocities by using
the parameter u:

u=U/u, ™

and

v=V/u, ®
where

n=w/(Lp.5) ©)

Then the equilibrium of vertical forces, L = W, is written
in the form:

w-vPc, =1. (10)
Solving the equation above with respect to Cr, we obtain
Cy =(u-v)2. (11)

This equation directly links the flight velocity u-v with the
lift coefficient Cy. It should be noted that the use of (11)
corresponds to considering the equilibrium of vertical
forces.

Now we shall define the non-dimensional forms of the
resistance and drag;

R - B/{L p,usCpo)=v¥/or, o)
and

5=D/(%PaFSCDU)= (U—V}ztl’fKCLz)- (13)
Eliminating C; from (13) by use of (11), we have

D=(u-vP +xlu-v)2. (14)

Equating (12) with (14), we have the final equation to
solve in search of the equilibrium.

Feasibility of sea-anc} :
Firstly we shall consider the wind condition that sustains a
bird aloft. In equation (10) Cz has an upper limit, i.e., the
maximum lift coefficient Cppax, Which is usually the value
of C; at aerodynamic stall. This Crpax is insensitive to the
ground effect (e.g., Tani, 1937), a phenomenon known to
enhance the aerodynamic efficiency of wings in the
proximity of ground or water-surface. Substituting Crmax
into (10) and solving with respect to the minimum flight
velocity, say designated by (1-V)min, We obtain

(u -v)mm -]/,,‘CLmax : (15)

Eliminating u-v from the right-hand side of (14) by use of
the equation above, we have

B = (6Cp mar? +1)/C ma - (16)
The equilibrium of horizontal forces is fulfilled, when the
right-hand side of (12) is equal to the right-hand side of
the equation above:

VZ/O = (KCL max2 + 11/(31_ max * 17
Hence we have
s \/C’L‘CLmaxz +1l/CLmax - (18)

Substituting the equation above into (15), we finally
obtain uy, the minimum wind velocity to sustain a bird
aloft:

uf = [1+1"7(KCLmax2+1)]/\chmax .

To summarize, a bird can soar in a wind with a speed
greater than or equal to ur.

(19)
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Exist e .
Next we shall consider the existence of an equilibrium. In
(12) and (14) o, u, and k are given constants or
parameters. The velocity v is obviously smaller than the
wind speed u. Equation (12) shows that the resistance
assumes a parabola in terms of v and independent of u.
On the other hand, the first term on the right-hand side of
(14) is a parabola in terms of u-v, while the second term
diverges as v approaches u. Hence there are only three
possibilities in the relations between the resistance and
drag curves: the two curves have no intersection; the two
curves have one point in common; the two curves cross
each other at two points. An intersection of two curves
corresponds to an equilibrium between drag and
resistance.

Let u, be the wind velocity giving one and only common
point to two curves. Figure 2 shows typical three cases
plotted against v: if u < u,, there is no equilibrium; if u =
ue, there is only one equilibrium; if # > u,, then there are
two equilibria. In the last case, u > u,, one can easily
recognize the intersection at larger v, but not the other
which is located in the close vicinity to the origin, because
the resistance is zero and the drag is equal to u* + k2 at
v=0. Therefore the existence of an equilibrium is assured
if u is greater than or equal to ..

We shall calculate the critical wind speed w.. Since the
resistance and drag curves have the equilibrium point and
the tangent there in commeon, the following equations
must hold:

v2/0=(u—v)2 +x(u-v)?, (20)
vjo =-(u-v)+xle-v)>. (21)
The subtraction of (x, - v) multiplied by (21) from (20)
yields
2_(i-dok, 20

Al-o Zil—cj

Solving (22) with respect to v in (0, u.), we have the
equilibrium velocity:

1-40 +V/1+80
V= U, .
4‘1—0‘j

On the other hand the addition of (u. - v) multiplied by
(21) to (20) yields

uglug -v) =20 .

v 0. 22)

(23)
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Figure 2 : Typical relations between drag and resistance.



Substituting the equilibrium velocity (23) into (24), we
have the nonlinear equation for u,.:

fi- 40+ Viv80 J3-Vix80 |

4
u, =20K . 25
64(1-of ¢ &)
This equation can be solved analytically with respect to u,:
1/4
1280(1- o Pk 26)

T (1-—40+«/1+80X3—1}1+80)2 .

To summarize, a bird can attain equilibrium flight if the
wind velocity is greater than or equal to u..

Stability of sea-anct :
In order to make sure of the feasibility of an equilibrium,
we must examine the static stability of the equilibrium,
i.e.,, whether there is a restoring force against any
disturbances. Figure 3 describes how the restoring force
would be generated. Suppose a petrel, soaring on the
equilibrium condition D=R, is disturbed and the velocity
to the sea v becomes slower or faster.

First we consider the case of the slowerv. Asv becomes
slower, the bird moves behind the equilibrium position as
shown on the left portion of Fig.3. Therefore in the
slower v situation the bird is pulled back to the
equilibrium, if D'>R".

The other is the case of the faster v. As v becomes
faster, the bird takes on the equilibrium position as shown
on the right portion of Fig.3. Therefore in the faster v
situation the bird is pulled back to the equilibrium, if
DJI’<RH.

The inset at the top of Fig.3 shows the possible relation
between D and R against V, which corresponds the
situation discussed above.

Returning to Fig.2, we shall look for the stable
equilibrium. By comparing the inset in Fig.3 with curves
at u = u. on Fig.2, it is obvious that the equilibrium at u =
i, is not stable. When u > u,, the intersection at larger v
does not meet the above requirements for return to
equilibrium, either. Only the equilibrium in the close
vicinity to the origin meets the requirements, and
therefore it is stable. This equilibrium is quite preferable
to a petrel: v is very slow, and hence it can soar almost
stationary to water; slower v also implies larger # - v, and
hence aerodynamic lift can easily sustain the weight.

The discussion of this subsection reveals that petrels can
soar stably at very small v, when u > u,.
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Figure 3 : Stability of sea-anchor soaring.
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Figure 4 : Contour plot of i in (4/S, AR) plane.
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Figure 5 : Contour plot of i, in (4/S, AR) plane.

NUMERICAL RESULTS AND DISCUSSION

Assumptions on parameters
I assumed the following values: p,=1.25[kg/m’],
0w=1025[kg/m’], Cg=1.0, Cpp=0.05, and Cims=1.5.
Induced drag in ground effect is estimated by the formula
(Laitone 1989, Rayner 1991):
k_1~21n+(86/:|:)2’ @n
emAR|L + (88 /x ]
where 6, e, and AR denote respectively a ratio of the flight
altitude to the semi-span, Oswald's wing efficiency, and
the aspect ratio of the wing, i.e., the full-span squared and
divided by the wing area. The value of § was assumed to
be unity. The wing efficiency e takes the value between
around 0.7 of the worst-shape wing and unity for the best
wing. We call e4R the effective aspect ratio.
Substituting these values into (5), (6), and (9) we obtain
the relations among o, «, i, A/S, eAR, and W/S.

Substituting assumed parameters into (19) and (26), we
can relate uy and u. with A/S and AR.

Figures 4 and 5 show, respectively, velocity contours of
urand u, in the parameter space (4/S, AR) withe=1. Sea
birds have AR values ranging from around 5 to 20, so uyis
almost always larger than u.. This means stability of
sea-anchor soaring is almost always assured, if the wind
speed is greater than uy. With different e values, situations
are similar,

Figure 4 also shows that at a given AR, a bird with
smaller A/S needs stronger winds to achieve sea-anchor



soaring. Storm petrels have well developed webs and
moderate wing area, therefore their A/S values are the
largest among sea birds.

Sl et th wind ¢ it

All the preceding arguments have been made on non-
dimensional values. In this subsection we shall discuss
the scale effects. = Among parameters, only W/S has
dimension, ie, [N/m?. Using (7), (8), and assumed
parameters, we will regain velocities with the right
dimension. We shall also compare and discuss
performances of two extreme examples, i.e., the Wilson's
storm petrel (Oceanites oceanicus) and the Wandering
albatross (Diomedea exulans). We shall use the relevant
data, taken from Withers (1979) and Azuma (1992) and
shown in Table 1.

The accurate estimate of Uy for the Wilson's storm petrel
with e=1 is 4.79[m/s]. Even if we assume the Wandering
albatross's A/S is as large as the Wilson's storm petrel's, we
obtain a very large value for the albatross with e=1:
U=4.79[m/s].

According to the Beaufort wind scale, wind as fast as
12.5 to 13.1]m/s] would induce water waves as high as
6[m]! Therefore larger sea birds like albatrosses are
incapable of sea-anchor soaring because too strong a wind
is required in rough sea waves. In reality albatrosses are
not observed to sea-anchor soar.

Calculations with e = 0.7 estimate about a 10% increase
in every velocity, but the overall trend is quite similar to
the results above.

Species A AR WIS A Ref.
Names [?] [N | [
Wilson’s 0.017 9 19.3 0.008 | Withers
storm petrel
Wandering 0.667 18 147 ? Azuma
albatross

Table 1: Morphometrics of two sea-bird species.

Scale effects to the velocity to water

The next consideration is on velocity to water V. This can
be estimated from (16) multiplied by the square root of p.
By assuming e = 1, we obtain V= 0.256[m/s] for Wilson's
storm petrel. Due to this very low velocity to water, they
can easily "walk" back to something they drift past on the
sea surface, immediately after they find it.

We shall assume the existence of an upper bound for V,
partly because too large a V' is inconvenient for a bird to
watch the sea surface, and partly because too large a V'
requires too high a walking speed to floating items.
Compared to other sea birds, storm petrels have rather
long legs for their body size, every sea bird can walk at
0.25[m/s] or so. If we require ¥V < 0.25[m/s], then we
obtain the inequality with respect to A/S:

-‘Si > 1.04x10'3(%][13.1(a411 Y1), 28)

Figure 6 shows the contour plot of A/S, that satisfies the
equality of (28), in the parameter space (W/S, AR). Since
even a storm petrel's A/S is 0.0471, larger sea birds need
huge webs: for example a Wandering albatross must have
a pair of webs about 40[cm] diameter! If we adopt 0.05 as
the maximum value for A/S, birds with W/S larger than
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about 30[N/m?] cannot make use of sea-anchor soaring at
V = 0.25[m/s].

CONCLUSION

Based on conventional wing theory I have analyzed the
sea-anchor soaring, and found

(1) the feasibility and existence of an equilibrium are
summarized by formulae giving two kinds of lower
bounds to the wind speed, i.e., us and u,;

(2) a stable equilibrium exists at the very low velocity to
water, V, only when the wind speed is greater than uy,
(3) uyis much greater than u, for most sea birds, and hence
sea-anchor soaring is possible with the wind speed greater
than uy;

(4) the sample calculation shows that the Wilson's storm
petrel can sea-anchor soar at V' = 0.256[m/s] in the wind
with U = 4.79[m/s] under the best conditions;

(5) larger sea-birds like albatrosses need strong winds to
soar, but such strong winds make the sea very rough and
prevent soaring;

(6) W/S of a bird that can make use of sea-anchor soaring
is limited up to around 30[N/m?] due to the upper bound of
foot-web size, A/S = 0.05, and the upper bound for the
velocity to water, V' = 0.25 [m/s].
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