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ABSTRACT

Numerical and experimental investigation of the fluid
flow, mixing and stretching in wavy Taylor vor-
tex flow is presented which shows that the effective
(chaotic) diffusion coefficient is a function of wave
state. This result suggests that a universal relation-
ship between dispersion and Reynolds number cannot
be found in this regime of cylindrical Taylor-Couette
flow. Fluid retention in the cores of the wavy vor-
tices is also predicted, and fluid trapped in vortex
cores is only poorly mixed within the core and plays
no role in global mixing except via molecular diffu-
sion. Experimental validation of the existence of vor-
tex core regions in wavy vortex flow is presented for
the first time. Mean fluid stretching is also calculated,
although a quantitative relationship between stretch-
ing and effective axial diffusion is not apparent from
the results.

INTRODUCTION

Cylindrical Taylor-Couette flow is a flow of funda-
mental fluid dynamical importance and has been ex-
tensively studied since the work of Taylor (1923).
Taylor-Couette vessels have been used both as reac-
tion vessels and to quantify the relationship between
shear and aggregation by coagulation and floccula-
tion (e.g. Pudjiono and Tavare (1993); Farrow and
Swift, (1996)). Pudjiono et al. (1992) describe other
applications for cylindrical Taylor-Couette flow, in-
cluding viscometry, cooling of rotating electrical ma-
chinery, dynamic filtration and classification and cat-
alytic chemical reactors.

When only the inner cylinder rotates, a critical
Reynolds number, Re¢, exists at which cylindrical
Couette flow becomes unstable to axial perturbations.
In the resulting axisymmetric Taylor vortex flow, fluid
elements are constrained to lie on invariant tori within
vortices. Apart from molecular diffusion, each vor-
tex remains disconnected from its neighbours and be-
cause of this, the vortices are not efficient mixers.

761

As the Reynolds number is increased beyond Rec,
a point is reached at which Taylor vortex flow be-
comes unstable to azimuthal perturbations. The re-
sulting ‘Wavy Vortex Flow’ (WVF) has been shown
to be a far better mixer than Taylor vortex flow due
to the presence of Lagrangian chaos in fluid particle
trajectories, (Rudman 1998). Coles (1965) observed
that for a given value of Re in the wavy vortex flow
regime, many different wave states can exist. The
wave state has been shown to have a significant ef-
fect on mixing (Rudman 1998) and this relationship
is examined here using a combined numerical and ex-
perimental approach.

EXPERIMENTAL METHOD

A schematic of the Taylor-Couette apparatus used
the experiments here is shown in Figure 1. It con-
sists of an anodised aluminium inner cylinder with
a radius 5.95 cm and a perspex outer cylinder with
a radius of 6.95 cm, giving a ratio of inner to outer
radius radius of 7 = 0.856. The working height is
37.4 cm and the end walls are fixed to the stationary
outer cylinder. The inner cylinder is driven by a re-
duction motor via a V-belt and cylinder rotation is
measured from the motor shaft using a tachometer.
The reduction ratio is approximately 217 and allowed
an accurate estimate of cylinder rotation rate to be
obtained. Two types of flow visualization were used.
For velocity pattern identification the working fluid
was 2% by volume Kalliroscope in water. For tracer
dispersion visualization, an acid-base indicator solu-
tion was used.

The vessel was commissioned by visually observ-
ing the Reynolds number at which transition from
Couette to Taylor vortex flow (TVF) occurred. The
theoretical value for 7 = 0.856 is 110.8 (Coles 1967)
whereas transition was observed to occur at a
Reynolds number of 104 & 2. Drift in the speed
controller and temperature effects were ruled out as
sources of this discrepancy, which is most likely re-
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Figure 1: Schematic of the experimental set-up.

lated to imperfections in the rig. The disagreement
between theory and experiment does not invalidate
any of the qualitative results obtained in this paper.

In this study we consider the wavy vortex flow
(WVF) regime in which many different wave states
may exist for a fixed Reynolds number. The wave
state is defined using the number of waves in the az-
imuthal direction () and the number of vortex pairs
in the axial direction (n). Note that there must al-
ways be an even number of vortices, 2n in a vessel
with end walls fixed to the same cylinder. Here, a
single Reynolds number of 715 is studied (based on
the velocity of the inner cylinder and gap between
cylinders).

Two different wave states are considered: WS1 in
which (m,n) = (4,15); and WS2 (m,n) = (5,17).
While more than one wave state can exist for any
Re, once established a given wave state is stable. Im-
portantly, accessible wave states can be reliably es-
tablished by fixing the way in which the desired Re
is approached. To reproducibly obtain the two wave
states studied here, the procedures were:

WS1, (4,15) Start at Re = 1690 and decrease the
speed setting in 12 equal increments until the
final rotation rate (Re = T15) was reached.

WS2, (5,17) Start at Re = 92 and increase the
speed setting in 15 equal increments until the
final rotation rate (Re = 715) was reached.

In addition to Kalliroscope visualisation, an acid-
base chemical reaction was used to study local and
global mixing patterns in the flow and to compare
to the results of simulation. A solution of Nitrazine
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Yellow in NaOH was used which changes colour from
dark blue at pH 7.2 to bright yellow at pH below 6.
The titration procedure was:

1. Fill the vessel with 1450 mL of Nitrazine Yel-
low/NaOH solution (pH 8.5), leaving space for
the addition of the acid neutralising solution.

2. Obtain the desired wave state.

3. Add 20ml of HCl (pH 2.4) which, when well
mixed with the solution already in the vessel, is
enough to change the entire volume of solution
to a pH of 5.1 and thus from blue to yellow.

NUMERICAL METHOD

In the numerical study, the time-dependent solu-
tion of the fluid flow field in the experimental appa-
ratus is obtained in a stationary coordinate frame us-
ing the conservative finite-difference method detailed
in Rudman (1998). Only one wavelength in the axial
and azimuthal directions are simulated and doubly-
periodic boundary conditions are used (see Figure 2).
The solution is integrated forward in time until the
flow becomes time periodic. In the wavy vortex
regime, the flow field is steady when viewed in a co-
ordinate frame that rotates with the azimuthal wave.
This steady fluid flow solution is used to integrate
10,000 fluid trajectories forward in time in a coordi-
nate frame that rotates with the azimuthal wave us-
ing the fourth-order Runge-Kutta method discussed
in Rudman (1998).

Validation of the numerical method was under-
taken by comparing wave speeds for WVF against the
experimental wave speeds measured by Coles (1965)
and those predicted numerically by King et al. (1984)
Discrepancies were well within the experimental scat-

Figure 2: Computational domain for simulation.
The boundary conditions are periodic in the axial
and azimuthal directions.



ter and differed from the numerical results by less
than 0.5%. The fluid trajectory code was validated by
comparing results to those presented in Broomhead
and Ryrie (1988) and showed excellent agreement.

RESULTS

In Taylor vortex flow, the velocity field is axisymmet-
ric and fluid elements traverse the surfaces of invari-
ant tori. Mixing occurs only as a result of molecular
diffusion. Once the symmetry of Taylor vortex flow
is broken, global transport and chaotic mixing result
(Broomhead and Ryrie 1988). The velocity field on
one r — z slice is shown in Figure 3a for WS1 and
in Figure 3d for WS2. In contrast to axisymmetric
Taylor vortex flow, the velocity field changes signifi-
cantly in the azimuthal direction (not shown) and the
relative size of each vortex shows a shift-and-reflect
symmetry in the vertical direction. The ability of the
velocity field to advect fluid between vortices in wavy
vortex flow is clearly seen in the plots.
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Figure 3: Results for WS1 (top) and WS2 (bot-
tom) (a,d) Predicted velocity field, (b,e) Poincaré
section and (c,f) experimental visualisation on
one r — z slice.

DISCUSSION

Evidence of chaos in these flows is seen in the Poincaré
sections in Figure 3b for WS1 and Figure 3e for WS2.
These sections are obtained with respect to a coordi-
nate frame that rotates with the azimuthal wave and
clearly show ‘vortex core’ regions in which fluid is
trapped. Outside the core regions is a well-mixed re-
gion in which particle trajectories are chaotic. The
presence of non-mixing vortex cores so far from the
transition to wavy flow was numerically predicted
in Rudman (1998) but has not been experimentally
verified previously. The acid-base indicator system
described above was used to visualise this flow and
the experimentally observed vortex cores are shown
in Figure 3c for WS1 and Figure 3f for WS2.

One estimate of mixing can be defined using an
effective axial diffusion coefficient, IJ,, as done by
Broomhead and Ryrie (1988). This diffusion coeffi-
cient is a measure of chaotic transport in the flow.
In the wavy vortex regime the wave state of the
flow has a significant impact on the predicted dif-
fusion. For WS1 D, = 1.18 x 10~2 and for WS2
D, = 8.47 x 10~3—a factor of 1.4 different. Given
the often large range of wave states attainable in wavy
vortex flow, the factor of 1.4 is likely to be a lower
bound on the range of D,. Although some stud-
ies have found that the effective diffusion in Taylor-
Couette flow is a power law function of the Reynolds
number (Moore and Cooney 1995), the results shown
here suggest that such correlations are not valid in
the wavy vortex regime at least and that neglect of
wave state is not justified in this case.

The volume of the vortex core region in each flow
was estimated by following fluid trajectories for a di-
mensionless time of 10,000 - those that has not moved
axially more than one quarter of a domain height from
their initial positions were considered trapped. Using
this criterion, the vortex core size for WS1 was 7.6%
and for WS2 was 15.0%. Although the different core
sizes goes part of the way to explaining the different
effective diffusion coefficients in WS1 and WS2, it is
insufficient to explain all of it. The full explanation
must be more fundamentally related to the chaotic
dynamics of the fluid flow.

The model usually used to describe axisymmetric
Taylor-Couette flow when it is considered as a reac-
tion vessel is that of a series of well mixed reactors
(Katacka 1975). Quite clearly this model is invalid
once the symmetry of Taylor vortex flow has been
broken, and the picture more closely resembles the
model of Campero and Vigil (1997) in which the flow
is broken into well mixed and non-mixed regions. The
predicted volume of the vortex cores here is consid-
erably lower than those used in the reactor model of
Campero and Vigil in which the core volume was a pa-
rameter found by least squares fitting to experimen-



Figure 4: Stretching of an infinitesimal vector dX
with unit direction M.

tal data. However, the titration experiments suggest
there is a larger area around the vortex cores that
mixes quite slowly. This slow mixing region is ap-
proximately 1/3 of the domain in WS1. This type
of region is common when invariant KAM surfaces
break up, such as happens after the transition from
Taylor to wavy vortex flow. The area of the slow mix-
ing regions are closer to the core size values deduced
in Campero and Vigil, and it may be that these re-
gions are important in understanding and predicting
the performance of Taylor-Couette reaction vessels.

An alternative way to quantify mixing is suggested
by Ottino (1989) (Chapters 2 and 4) in his discussion
of fluid stretching. Consider an infinitesimal vector
dX at X with a unit normal direction given by M
(see Figure 4). After some small elapsed time the
vector has been advected and stretched and is now
represented by an infinitesimal vector dz at = with
unit normal direction 1. The length stretch, A, of
the infinitesimal vector is defined to be the limit as
dX — 0 of de/dX. The equations that describe
the the evolution with time of A and the unit direction
vector M in a fluid flow are

D(ln X)

Di —; (mT- S - m)

(1)

m-VU — (mT . § . m)m,

Dt
where S is rate of strain tensor.

The mean total stretching experienced by 1,000
fluid particles as a function of time are shown in Fig-
ure 5 for WS1 and WS2, as well as for axisymmet-
ric Taylor vortex flow and Couette flow. The mean
stretching for Couette and TVF increase at a similar
rate to WVF for very small times but rapidly flatten
out, increasing at best linearly in time. In contrast,
the mean stretching for both wavy flows is exponen-
tial in time indicating the degree to which mixing is
superior in this flow regime. Surprisingly, the total
mean stretching for these two flows is almost identi-
cal and thus cannot explain the differences obtained
in effective axial diffusion coefficients. A similar result

(2)
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Figure 5: Log mean total stretching versus time
for WS1, WS2, TVF and Couette flow.

has been found in an unreported study of other wavy
vortex flows in which higher D, have been found for
flows with less mean stretching. Although there is a
clear qualitative relationship between stretching and
mixing performance, it is not clear how stretching can
be used to formulate quantitative relationships.
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