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ABSTRACT

The interaction of a liquid drop with a thin solid probe
facing an oncoming two-phase liquid flow is discussed.
1t is shown that over much of the flow field inertia and
surface tension are the dominant forces acting, though
gravity must be accounted for and important boundary
layers exist near the surface of the probe (and near the
interface).

A simple model is given for determining the steady rise
velocity of a drop in a infinite stagnant fluid, which is
relevant to this problem.

Lubrication-type equations are developed for the
movement of an otherwise planar interface as it wraps
symmetrically around a probe having the form of a
parabolic cylinder; two regimes are considered, the
inviscid-capillary limit and the viscous-capillary limit.
Some remarks are made about issues not analysed in this
paper.

INTRODUCTION

Recent techniques for sensing the passage of drops and
bubbles in multi-phase flow past small (local) probes
depend upon understanding the fluid mechanics of the
process. Typically, the cross-section of the probe is
smaller than that of the drop and it is assumed that the
presence of the probe causes little disturbance to the
movement of the drop, which appears to remain roughly
spherical, however interpretation of the probe signal
depends on the fine detail of the way in which the
interface between drop and continuous phase approaches
the nose (leading point) of the probe and spreads around
it until it breaks to form a moving contact line.

We shall consider here the case of one Newtonian fluid,
a light oil say, of density p; and viscisity ., dispersed as
drops of diameter D in a second fluid, water say, with
which it is immiscible, of density p; and viscisity pa.
The interface between the two fluids is characterised by
a constant interfacial tension o. The probe, whose design
will be determined partly by its manner of distingnishing
between the two fluids, may have a variety of shapes,
some of which are shown diagrammatically in figure 1
(a); its characteristic dimension is d << D. The axis of
the probe is mounted to face (parallel to) the direction of
the oncoming flow of dispersed droplets. Its active part
will in general be its tip which senses the passage of an
interface.
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A general flow field will be characterised by u(r.),
where u is the velocity of whichever phase (1 or 2)
happens to be at position r at time ¢. It is possible to
write down the mass and momentum equations for such
a flow in standard form (Navier-Stokes, no-slip at solid
boundaries and Young-Laplace at interfaces) assuming
the liquids to be incompressible and isothermal, and
drops to remain distinct. For two-phase pipe flow, a
typical situation of interest, the full motion will be
highly unsteady, particularly if the droplet phase is at all
concentrated. However, if the relevant probe dimension,
say the radius of curvature of its nose, or the length of
the active sensing portion, is small enough, the passage
of a drop can be considered to be determined by that of
two locally plane interfaces (separating fluids 1 and 2)
moving at constant velocity “far” from the probe tip.
Thus to each drop will correspond a local size and
velocity.

It is observed that sharp tips “puncture” the interface
during the passage of any drop that strikes the probe at
other than glancing incidence. The time taken for the
interface to reach the probe and for the fluid to be
squeezed out from the thinning layer between interface
and probe tip - see figure 1(b) - is imporiant when
interpreting probe signals to yield relative concentration
of the two phases and their flow rates.

Figure 1 : (a) Simplified diagrams of probe shapes; (b)
interface approaching a smooth-nosed probe.

Some aspects of the problem are examined in the
following sections. Dimensional analysis is used to
estimate the importance of various components of the
stress field. A simple mechanical model is given for the
buoyant rise of a drop. A convenient probe shape
(parabolic cylinder) is selected to illustrate the various




stages and regions of the flow process; a plane interface
normal to the probe axis moving parallel to the axis,
with equal densities and viscosities in the two fluids, is
considered for analytic simplicity.

CHARACTERISTIC SCALES; DIMENSIONLESS
GROUPS

Typical values of physical quantities are (U; and U
being mean axial speeds and R a pipe radius):

p1 P2 wm p o U UU; D d R
kg/m® kg/m® PasPasPam m/s m/s mm mm m
750 1000 2 1 0.03 04 015 5 03 0.1

From these we can define and estimate the values of
characteristic dimensionless groups that measure the
relative significance of the various forces acting;

Reynolds number, drop  Re; = p(AU)D/p ~ 750

Reynolds number, probe  Re; = palid/ps = 150
Capillary number Ca = walhio =~ 0.01
Weber number, drop We = Ap(AUYDlo =~ 1
Weber number, probe ~ Wes = p:Ui%dlc ~ 1

Bond number, drop
Bond number, probe

Bd, = ApgD*o ~2
Bd, = Apgd*lo =~ 0.01

From these, we can confirm that capillarity and inertia
are the dominant forces acting almost everywhere. The
main effect of gravity is to distort the larger drops from
the spherical and will be insignificant for probe-interface
dynamics. Viscosity will lead to thin boundary layers
over the probe (of the order of 10 pm) and to weak
effects near moving interfaces.

The pipe Reynolds number Re, = p;UsR/1z ~ 40,000 so
we expect turbulent flow. An interesting question is
whether the turbulent eddies are such as to cause droplet
distortion or unsteadiness in the incoming flow during
the passage of a drop interface past a probe tip. The time
of passage is of the order of d/U; ~ 1 ms. By using the
Kolmogorov scale (Batchelor, 1953, p.115) for eddy
length (v¥g)" and velocity (ve)"* where € is the local
rate of isotropic turbulent dissipation/unit mass, we
obtain typical values of 100pum and 1 cm/s respectively,
with a characteristic time of 10 ms. We conclude that the
turbulent fluctuations will only cause small
perturbations to the assumption of a steady flow far from
the probe tip during the passage of an interface. More
detail about pipe flow turbulence can be obtained from
Townsend (1956), more elaborate reasoning based on
his data leads to a similar conclusion.

SUBMODELS FOR FLOW

Bubble rise velocity

A surprisingly useful estimate (to compare with
observations) can.be obtained by supposing the flow
field for a rising drop to be given by a Hill spherical
vortex (Batchelor, 1967, p.526) moving at speed AU
relative to the fluid at rest far from the vortex. This flow
field, steady with respect to the centre of the vortex, is a
solution of the inviscid equations of motion. Within the
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vortex, the fluid has uniform vortjcityl; outside the
vortex it is irrotational. Furthermore the velocity is
continuous at the spherical surface defining the vortex.
For the O(10”) Reynolds numbers characterising rising
drops, an inertia-dominated flow field is to be expected,
for relatively small differences in density, drop Bond and
Weber numbers will be small enough to ensure near
sphericity, as is observed. The balance of buoyancy and
drag can be understood by supposing the viscous
dissipation to be balanced by the loss of gravitational
potential energy, as has been done successfully for gas
bubbles within an appropriate volume range (see
Batchelor, 1967, fig. 5.14.1). For a viscosity ratio m =
Wa/pe the dissipation within the drop can be shown to be
4m times that outside. For our case, estimates for rise
speeds within a factor of 2 of those observed were
obtained.

Flow past a parabolic cylinder
This specific probe shape will be used here for
illustrative purposes. Flows will be taken as plane and
both » = pi/p2 and m to be 1 for simplicity. The probe
surface cross-section is given by
¥ =4de(c—x) (1)
where y = 0 is the probe axis (plane of symmetry) and its
nose is at (¢,0). It extends from ¢ to -co. Its curvature is
x=—c"%/2(2c—x)*? )
with a maximum -1/2¢ at the nose. It is convenient to
use parabolic cylinder co-ordinates (see Happel and
Brenner, 1965, p.500)

x=o(& = 1), y=2eén,
he = hy =1/2e(8 +177)"2
in terms of which the probe surface is £ = 1.

Inviscid single-phase flow is given by the stream
function

3

v =2Uc(E- )7y 4)
where
uq=h§%, u,: =h’7% (5)

and u, = -U is the uniform flow at x — o (£ — o0).

If the surface tension o were negligible (We; — o) then
an interface would simply be convected. It can be seen
that along the axis y = 0, the fluid speed will be U(E?! -
1), and so the time taken to move the interface from

(x1,0) to (x2,0) will be given by
% og @02
N el R
340 ey UC

For y — o, the equivalent time would be simply (x| -
x2)/U. The difference At represents the slowing up effect
of the probe and yields the drift
12, 1/2 172 J\’1”2 B
UM =2¢""(xy " —x )+2clnﬂ @)
X7 =C

Note that this becomes unbounded as x; — o (although
the flat interface assumption becomes invalid as x; — D)

! Surprisingly this inner flow field is the same as that obtained
(Batchelor, 1967, p.235) in the low Reynolds number limit, the
Hadamard solution



but also as x; —» c¢: the interface never reaches the
surface of the probe, because there is a stagnation point
at the nose even in the single-phase inviscid solution.

If the surface tension is dominant (We; — 0) the
interface is convected as a line (plane) until it hits the
nose, taking a finite time from any finite position, say x;
=D.

If we use the local velocity |u,] and distance from the
nose (x - c¢) to estimate local Weber and Reynolds
numbers, we find that both decrease towards zero, and
so as expected viscosity becomes important and surface
tension provides the driving force.

The fuall single-phase boundary-layer solution satisfying
no slip at the probe surface can be obtained for the outer
flow (4) (see Haddad and Corke, 1998), the parabolic
cylinder co-ordinates (£,m) being optimal in the Kaplun
sense (Rosenhead, 1963, p.240). For our purposes we
note that very near the nose, along 1 = 0, the solution is
essentially that for the flat plate stagnation point solution
(Rosenhead, 1963, p.155) with outer flow
Uy ==Ux'le, u, =Uylc (8)

and so the effective boundary layer thickness /(0) will be
about 2(j1e/pU)". For our typical case we take ¢ = 100
pum, giving I(0) ~ 30 pm, which is suitably small
compared to the maximum radius of curvature 2¢ = 200
pm.

Lubrication approximation

As the interface approaches the nose, it will wrap around
it so that a thin “lubricating” layer of the fluid being
displaced separates the interface from the surface of the
probe. A suitable criterion for this is that the thickness
h(n) be small compared to the inverse of the curvature
¥(n). From (2) and (3) above, putting £ = 1 on the probe,
this requires

h(n) << 2e(1+ )2 ©)
We note that (9) is not incompatible with
() << h(m) (10)

for extreme values of the parameters characterising the
flow, and so an inviscid lubrication approximation is not
without interest. For this situation un(n.8) = u(n),
constant across the layer while the flow outside the layer
is the single-phase inviscid solution (4) to the same
order of approximation. Because the layer is thin, the
curvature of the interface will be that of the probe itself,
while the outer flow pressure field at the interface will
be that at the probe in the absence of an interface. This
means that the pressure p within the layer can be written

Uy c

=— 11
P(n) 201+ 7%) i3 21+ 7" (1)
The equations governing the flow are
Su u u 1 ap
= = = - = (12
& i ey
h ] Ak . (13)

a 21+ o
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the first being the unsteady Euler equation and the
second the integrated form of the continuity equation.
Because the driving force in (12), namely p given by
(11), is independent of time, we can put &u/a = 0 for
late times, and so (11), (12) become decoupled from
(13). We obtain

168  U’p NE

20n  +n 20 47

which can be integrated, using the boundary condition
u(0) =0, to give

1 o 1

2 2

=U*1- +—| - 15
= ( 1+an pc( (1+712)3’2J )

For n — o0, we note that

1/2
u—> U[l +L2]
= U

The estimated value for We, shows that neither term in
(16) can be expected to dominate. The solution of (13)
using (15) is best carried out computationally, but we
can consider the situation at 1 = 0, where (13) simplifies
to

(14

(16)

. 12
o ZJ 6
2pcl

and so ho decreases exponentially with a time scale of
the order of ¢/U as expected. Similar exponential
decrease can be expected at other values of 1.

% Uy, an

a 2¢

However this process will only be relevant until
viscosity becomes important. For the final phase of
approach of the interface, when h(0,r) << I(0), a purely
viscous lubrication approximation within a thin layer
with a no-slip condition at the probe surface, and a no-
tangential-stress condition at the interface, will be
relevant.It will be driven by the same pressure field (11)
as obtained for the inviscid case. The local flow
equations become

1 ép c?zu,? i
20+ 792 o Y (18)

where n is a local co-ordinate normal to the interface
(and the probe surface), along with (13) where

h
hu = [u,(n)dn (19)
0

Using the no-slip and no-stress boundary conditions on
uq at n =0 and A yields

W p

" G P 2 o
and so
. ( o, 301;/2ch2)
a 12+ m\a+Y? )
=0 @1

Once again we consider the situation at 1 = 0, to obtain



3o
+ 2}:03
2pcU

2
i ( 22)

B
a 12 uc*

with solution kg o £2.

The intermediate “boundary-layer” phase, when both
inertia and viscosity are relevant on both sides of the
interface is a more difficult problem to set out, though of
considerable mathematical interest. The interfacial
boundary conditions will now require continuity of
tangential shear stress and velocity, the pressure field
will be given by both terms in (11) within the layer and
the inviscid solution outside. The scale length for the
normal co-ordinate will be [ and for the tangential co-
ordinate ¢. Both Weber and Reynolds numbers will play
a part in the evolution of /iy with . The nature of any
important similarity solutions has not been fully
investigated.

DISCUSSION

The aim of this work was not to give definitive solutions
to an idealised problem. It was to obtain insight into a
technically important flow and to identify the most
important issues worth investigating in a more
comprehensive study. There are several related issues
that have been considered but have not been reported
upon here.

(i) Boundary integral methods for calculating the motion
of an inviscid drop in an inviscid fluid flow approaching
a probe, where the problem length scale is several drop
diameters and the full shape of probe and housing are
considered. Bond and Weber numbers for the drop
suggest that both gravity and surface tension need to be
included to give realistic results, while the vorticity
within the drop has to form part of the initial conditions.

(ii) Non-symmetric drop arrival at the probe,
corresponding, in the near-probe flow approximation
considered above, to an inclined interface and a non-
axial uniform far flow field; in practice both of these
could be treated as perturbations to the symmetric flow
field, in that most drop/probe encounters for D >> d
(which contribute significantly to estimates for fractional
concentration) will be covered by small departures from
normal incidence of the drop surface at the probe tip.

(iii) Sharp-tipped, sharp-edged and axisymmetric
probes; a two-dimensional probe shape and planar flow
field were considered here for simplicity and an
equivalent analysis for a paraboloidal probe and an
axisymmetric flow field has been carried out, leading to
similar results and conclusions, however wedge and
cone shapes for the probe do not lead to simple
uniformly valid outer flow fields - the relevant
singularities at the tip are not easily accommodated
within boundary-layer theory (even the limit ¢ — 0
giving a flat plate in the parabolic cylinder case causes
problems). From an operational point of view, tips and
edges are important in that they precipitate a necessary
breaking of the interface allowing the drop fluid to
displace the continuous fluid and vice-versa; it is well
known in Stokes flow solutions that sharp bodies can
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touch one another whereas smooth spheres can never
touch when pushed together by finite forces.

(iv) Contact lines moving over the probe surface; aspects
of this problem have been considered by many authors,
but the full process involved here, including the
formation of a contact line, is not a matter for traditional
fluid mechanics alone; physico-chemical aspects of
wetting play a significant part as experiment has shown
and are critical at the technical level; a satisfactory set of
conservation and constitutive equations leading to well-
posed mathematical problems has not yet been agreed

upon.

Experiments will continue to play an important part in
future investigations, but it should be noted that optical
means are limited in resolution by the wavelength of
light (= 1 pm) which is just insufficiently small to
resolve aspects of contact line behaviour. It seems likely
that comparison of electrical and optical probe
observations with theoretical solutions for interface
movement will be the best way of gaining a full
understanding of the processes involved.
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