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ABSTRACT

Qualitative reconsideration of classic and other flows in
terms of boundary generated vorticity may add insight
both into the physical nature of particular flows and into
the more general behaviour of vorticity at and near
boundaries. It can also help to correct misconceptions
that may not have been obvious from the velocity fields
alone. The flows discussed involve aerofoils, bound
vortices, vortices around surface mounted obstacles, mass
sources, and vortex rings propagating towards boundaries
and through mesh screens.

INTRODUCTION

Vorticity satisfies the Helmholtz equation within fluids,
but solutions also require boundary conditions. These are
seldom discussed, cannot be deduced from the
differential equations, but must be prescribed from an
understanding of the physics of vorticity. Simple laws for
the generation and decay of vorticity at rigid boundaries
in homogeneous flows have been presented (Morton,
1984) but not always accepted. Their acceptance may
perhaps be helped by application of the laws either to
augment physical understanding of, or to resolve
misconceptions that have been associated with classic
and other flows. The briefest discussion only will be
given here so that a broad range of flows can be
introduced. Should this account be found of use then a
more detailed analysis may follow elsewhere.

Properties of Vorticity

The following properties are necessary for consistency in
solutions to some of the simpler viscous flows (Morton,
1984). They provide a satisfactory basis for
understanding a very wide range of heterogeneous as well
as homogeneous flows. In homogeneous flows, vorticity
is generated only at rigid boundaries where tangential
pressure gradients act or where those boundaries suffer
tangential acceleration, and at curved free boundaries.
Generation occurs in an exceedingly thin layer of fluid at
the boundary, but vorticity remains always in the fluid
and can neither be lost to nor enter from bounding walls.
Viscosity plays no part in generation but an essential part
in the transport of vorticity away from boundaries.
Vortex sheets, corresponding in the inviscid limit to the
boundary layers that obtain at lower Reynolds numbers,
cannot in general correctly model separation from their
boundaries, limiting the usefulness of inviscid fluid
dynamics. Decay is due solely to cross-diffusive
annihilation of vorticity of opposite senses within the
fluid and, in particular, vorticity cannot diffuse to and be
lost at rigid boundaries. The kinematic viscosity v is
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large among diffusivities, and vorticity may diffuse very
rapidly where gradients are high (c.f. Fohl and Turner,
1975, on colliding vortex rings). Dyes and smoke used
for visualisation have diffusivities typically three orders
of magnitude smaller than v, and dye traces in liquids or
smoke traces in air may persist as ‘fossils’ long after any
initially associated vorticity has dispersed. Thus dye or
smoke traces do not in themselves satisfactorily identify
the continuing presence of vorticity.

The circulation per unit length of a stationary boundary
through the full thickness of the boundary layer is nxV
where pn is the unit normal vector to the boundary and V
the free stream velocity above the boundary layer. The
rate of generation of tangential vorticity due to
acceleration dV,/dt of a boundary is —nxdV,/dt where V, is
the boundary velocity; and the rate of generation at a
boundary due to pressure gradient Vp is —p”(nxV)p.
Precisely the same generation mechanisms operate at
boundaries in heterogeneous flows, but within such flows
there is also buoyant generation of vorticity, fully
accounted for in the appropriate Helmholtz equation.
Uncertainty in handling vorticity arises only at
boundaries where, of course, the Helmholtz equation
does not apply.

The Blasius boundary layer on a semi-infinite flat plate in
a uniform parallel stream U has a line singularity at its
leading edge, x=0, at which vorticity is generated and
advected downstream. In the absence of pressure
gradients (except round the curved leading edge of an
actual plate which is represented by the leading edge
singularity) over a stationary plate, there is no further
generation of vorticity at the plate surface (x>0) and no
loss by cross-diffusion as all vorticity throughout the
boundary layer is of the same sign. Thus the boundary
layer thickens progressively downstream by diffusion of
vorticity alone and both the circulation per unit
streamwise length through the full depth of the boundary
layer and the flux of vorticity within the boundary layer
are invariant.

In an inviscid flow over a stationary boundary a free slip
velocity U corresponds to a boundary vortex sheet of
circulation U per unit streamwise length. The associated
vorticity may be regarded as suffering convection with
the flow at speed U/2, which is the mean of the speeds on
either side of the vortex sheet. It follows that the gross
flux of vorticity associated with the vortex sheet may be
taken as approximately U7/2.



Plane Couette and Poiseuille Flows

These flows exemplify the rules relating to the generation
and decay of vorticity. Couette flow between parallel
plates may be regarded as evolving in time. All vorticity
is generated at the initiation of flow by tangential
acceleration of one (or both) plates. Thereafter diffusion
leads to the steady asymptotic state comprising a uniform
distribution of vorticity (uniform velocity gradient) which
is permanent and in which fluid neither gains nor loses
vorticity. Poiseuille flow evolves under a pressure
gradient between two stationary semi-infinite parallel
plates. Vorticity of opposite signs is generated in an entry
length at the two plate surfaces, producing two boundary
layers which thicken downstream until they meet, after
which vorticity is lost by cross-diffusion over the centre
plane. Annihilation continues along the mid-plane
downstream, but the steadiness of flow is ensured by
continuing generation in the pressure gradient along each
of the two plates (at which outward normals and vorticity
generated are opposite in sense).

APPLICATIONS

The flows to be considered range from ‘well-known’ and
well understood, such as flow past an aerofoil at small
incidence, through well-known and perhaps less well
understood, such as horseshoe vortices round the base of
an obstacle mounted on a plate aligned with the stream in
a wind tunnel or water channel, to less well-known and
poorly understood, such as the propagation of a vortex
ring through a gauze or wire mesh.

The Kutta-Joukowski Condition

This condition specifies in terms of free-stream speed the
circulation K around a two-dimensional aerofoil at small
incidence for which the stagnation point on the upper
surface is replaced by smooth merging with small offset
angle of the upper and lower streams over the sharp
trailing edge, as observed in practice. Flow on the
streamline attaching to the aerofoil is irrotational but
there is continuous generation of vorticity of one sign
from the pressure maximum of the stagnation point of
attachment to the pressure minimum and of the other sign
from the pressure minimum to the next pressure
maximum corresponding to the separation stagnation
point. Thus the circulation per unit streamwise length of
surface at first increases and then decreases. At the
separation stagnation point on the upper surface the
tangential components of both velocity and vorticity at
the boundary change sign through zero and the flux of
vorticity along the aerofoil passes through zero. No
further generation of vorticity is possible on the
separation streamline along which the flow is
irrotational. Thus the inviscid flow cannot in general
serve as a model for a thin separated wake because the
flux of vorticity from either side of separation to that
stagnation point is zero.The sharp trailing edge, however,
proves to be a weaker singularity with neither velocity
nor vorticity zero; even in the large Reynolds number
limit there are non-zero equal and opposite fluxes of
vorticity from upper and lower surface vortex sheets past
the trailing edge of the aerofoil, which is the only surface
location in this limit permitting non-zero fluxes of
vorticity from either side and hence providing an in-
principle acceptable limit flow for wake formation behind
aerofoils at finite Reynolds numbers. It is the only

18

inviscid flow which comes near to simulating separation.

'Bound' or Lifting Line Vortices

These have played a role in analysing the lift on thin
wings of finite length. They have provided important
insights which may, however, be complemented by
consideration of the patterns of vorticity generation and
advection over the surface of finite lifting wings. The
shear layer generated over a horizontal wing surface and
shed as a thin wake may be represented by a succession
of discrete closed vortex filaments which form
continuously over the surface and are advected into the
wake. At zero lift these take the form of a series of
vertical ovals, and as the inclination (and lift) are
increased the ovals are increasingly skewed forming a
streamwise stack, advanced above and retarded below the
wing. Averaged vertically, these have mean forward
vorticity everywhere to the left of the plane of symmetry
and backward vorticity to its right. This representation
emphasises: (i) that vorticity is continuously generated at
and advected downstream from the entire surface of the
wing; (ii) that vortices rendered visible by water droplets
in the atmosphere or dye in the laboratory are often the
local result of distortions of a more extensive (if less
interesting) vorticity field; and (iii) that the vortex pairs
observed trailing in the wakes of aircraft have “roots”
representing continuous generation over every part of the
wing surface. There is no way in which vorticity can be
“bound” to a non-rotating surface. The flow field of a
single line vortex has infinite moment of momentum and
infinite kinetic energy per unit length; single line vortices
cannot be created by finite action in finite time and
vortices must form in pairs with zero net circulation at
distance. As a wing is accelerated into steady motion a
starting vortex is shed into its wake, equal and opposite in
circulation to that generated around the wing; thereafter
in steady flight the fluxes of circulation into the wake
from upper and lower wing surfaces, respectively, are
equal and opposite and a balance is maintained between
surface generation and downstream advection preserving
the circulation excess K in transit in the boundary layer.

A Cylinder Set Impulsively Rotating about its Axis

A cylinder with radius a set impulsively rotating about its
axis with angular velocity @ provides one of the few
genuine examples of a “bound” vortex. After the initial
instant, the cylinder has tangential surface velocity aw
and effective circulation 2ma’e, (which is the circulation,
taken positive, of the ring of fluid in contact with the
cylinder). The vorticity generated in the fluid by
acceleration of the cylinder surface occupies a contiguous
thin sheet and is wholly opposed in sense to @ (i.e. is
negative) and has gross circulation -27@’w exactly
balancing the initial circulation of the rotating cylinder.
Thus at the initial instant the gross circulation in any
circuit looping the cylinder is precisely zero and the
entire body of fluid is at rest. As the flow evolves,
negative vorticity diffuses radially outwards from the
surface of the cylinder exposing increasing positive
circulation in inner circuits, while circulation in
sufficiently distant circuits is positive but exponentially
small and that at infinity remains zero for all finite time,
nicely side-stepping the impossibility of generating a
single line vortex.



Horseshoe Vortices

Horseshoe vortices may be observed when the flow past a
vertical cylinder mounted in the boundary layer on the
floor of a water channel is visualised by releasing dye
upstream in the plane of symmetry. In general they form
a pattern of vortices in the boundary layer ahead and to
either side of the cylinder, although they are absent from
the highly diffusive flow at low Reynolds numbers. As
the Reynolds number is increased, however, a
“horseshoe-like” vortex appears wrapped around the
cylinder with arms trailing downstream. With further
increase a second vortex with opposite sense of rotation
appears beside the first and then a third with the same
sense as the first and so on, with as many as five vortices
appearing before boundary layer turbulence largely
obscures the pattern. The traditional explanation for this
well-known phenomenon is that filaments of vorticity
representing the boundary layer are advected towards the
cylinder and trapped upstream of it while their arms are
carried downstream to form a horseshoe, which is
stretched and thereby maintained as a vortex. The
traditional explanation is, however, a nonsense: for the
circulation per unit length of boundary layeris U and its
rate of advection in the boundary layer approximately
U/2; hence the flux of vorticity in the boundary layer
towards the cylinder is U%/2, and as these vorticity
filaments can neither be severed nor pass over the top of
a (high) cylinder the trapped circulation is of order VP12,
where U represents the free stream speed and ¢ is the time
since motion started. According to this argument, the
trapped circulation is unbounded and steady flow
impossible! Moreover, the traditional argument cannot
account for the vortices observed with sense opposite to
that of the boundary layer. The traditional explanation
has, of course, ignored the vorticity generated in the
adverse pressure gradient upstream of the cylinder at a
gross rate equal and opposite to that at which vorticity is
imported in the boundary layer. Thus the net flux of
vorticity to the cylinder is actually zero. However, the
(positive) flux with the stream is distributed throughout
the boundary layer while the negative vorticity is all
generated at the wall, with the result that local
concentrations may survive for some distance before
cross-diffusive  annihilation is complete. These
concentrations will suffer stretching and if rendered
visible with dye will appear as discrete vortices although
they are more of the nature of transients in which the dye
(of small diffusivity) persists downstream long after all
circulation has decayed.

Symmetric mass sources

Mass sources are commonly regarded as inviscid
idealisations, unattainable in the laboratory where flow
always separates at the inlet orifice to form a (viscous)
jet. A two-dimensional mass source can, however, be
produced, if with some difficulty, in a viscous laboratory
fluid from a source comprising parallel rubber belts
driven at precisely the (uniform) inlet speed of the source
fluid. In this case there are no boundary layers on the
rubber belts and no flow separation at discharge from the
source; streamlines adjacent to a belt do not separate but
emerge to follow the containing wall beyond the orifice.
For a source orifice in a tank wall, a jet is produced when
both belts are stationary; a symmetrical diverging
(source) flow when both belts are driven at source speed;
and when one belt is driven and one stationary the

19

emerging stream separates from the corner of the
stationary belt and is deflected along the wall past the
corner of the moving belt.

A Vortex Ring Approaching a Plane Boundary

A vortex ring approaching a plane boundary along a
normal is observed to grow somewhat in ring diameter
(d) and then to “freeze”, that is to come suddenly and
completely to rest at distance of order a diameter from the
boundary. The propagation speed of the ring is
proportional to #/d, and zero velocity necessarily implies
zero circulation (x). This is in marked contrast to the
traditional inviscid solution, in which the ring moves at
constant circulation as though under the unencumbered
influence of an equal and opposite vortex which is its
image in the plane, according to which the ring increases
in diameter unboundedly as it moves ever nearer the
boundary. The striking difference between observation
and inviscid solution results from neglect of the
generation of vorticity in the pressure gradient generated
inertially at the boundary as the ring approaches. A
pressure high is produced where the symmetry axis of the
ring intersects the boundary, with pressure gradients
directed radially towards this point. The vorticity
generated is azimuthal with sense opposite to the ring.
This vorticity is swept up by the approaching ring, carried
around it and entrained into its rear, then carried forward
and finally wound into the core of the vortex producing
annihilation of circulation by cross-diffusion in the
relatively high gradients of the core. The gross circulation
produced at the wall must be equal and opposite to that of
the ring before impact begins for total cancellation.

Collision at slant impact of two vortex rings

Fohl and Turner (1975) have reported an experiment on
the slant collision of two vortex rings which deserves to
be better known than perhaps it is. They used two small
impulse vortex generators in a tank of water to generate
simultaneously two equal laminar vortex rings, one dyed
red and one blue, so that they propagated along
symmetrically inclined intersecting paths in the vertical
plane through the generators. On collision, the lowest
limbs of the two vortices interacted first and there
followed an extremely rapid reorganisation without
change in vertical momentum, from which emerged a
single vortex ring, half red and half blue with sharply
defined colour junctions, and which propagated along the
forward bisector in the plane of the two approach paths.
Higher speeds of impact resulted in two rings, each half
red and half blue, which propagated symmetrically out in
a plane at right angles to the plane of approach. Although
the collision process was rapid, we may judge that the
lower limbs of the colliding vortices on close approach
respond as a vortex pair propagating downwards,
probably becoming unstable, wrapping round each other
and creating large but highly localised gradients where
cross-diffusion produces reconnection. The pressure field
of the vortex core then restores the deformed filament(s)
into ring(s). The “junction points” at which diffusive
reconnection has taken place are shown clearly by the
sharp colour transition, although it should be emphasised
that there is no question of cutting vortex filaments. It is
difficult to grasp the speed at which cross-diffusive
reconnection of vortex filaments with opposite sense can
occur, but the Fohl and Turner experiment provides



convincing evidence that it does so.

Passage of a vortex ring through a fine wire mesh

At low Reynolds numbers, a vortex ring impacting
normally on a fine wire mesh senses the mesh as a rigid
wall and exhibits the characteristic behaviour described
above. At moderately larger Reynolds numbers the ring
passes through the mesh, shedding some material because
of the negative impulse received, and if care is taken to
prevent instability and breakup may continue as a smaller
but still coherent vortex ring. This remarkable piece of
vortical microsurgery can be explained qualitatively in
terms of boundary generation and cross-diffusive
reconnection of vorticity filaments. At larger Reynolds
numbers still, vortex rings may have partially turbulent
cores and on passage through a mesh are likely to
experience breakup, sharing residual momentum with
ambient fluid and suffering substantial loss of energy
through turbulent dissipation.

When a vortex ring or pair approaches an impervious
wall its loss of momentum corresponds with an inertial
increase in pressure. There are two consequences: (i) a
source-like flow is driven back from the wall and to the
sides; and (ii) azimuthal vorticity is generated in rings
centred on the point of intersection of the propagation
axis with the wall (or in the appropriate pairs for an
incident vortex pair). When, however, the ring (or pair)
approaches a permeable mesh or grid, part only of its
impulse is converted to an increase in pressure and the
remainder is carried with fluid through the mesh holes. At
low Reynolds number the viscous resistance to flow
through the “pores” is high and there is negligible
passage of momentum through the screen, which
therefore acts in essence as an impervious wall. As the
Reynolds number is increased an increasing proportion of
the incident momentum is carried by “pore flow” and a
decreasing proportion is realised in the upstream pressure
field. Such inertial pressure excess as remains on the
upstream side has two effects relevant to our
consideration. Fresh vorticity is generated in the pressure
gradient over faces of the wires , bars or other
impermeable parts of the screen; and fresh vorticity is
generated also at the sides of the wires and bars as the
pressure  difference between the upstream and
downstream faces of the screen drives fluid through the
“pores”. To understand the consequences of this fresh
generation of vorticity, consider one line core of a vortex
pair which is parallel to, approaching, and much closer to
a plane screen than the separation of the two cores. The
line of pressure high on the wall will lie not directly
under the core axis but displaced slightly towards the
other line vortex of the pair. The vorticity generated
directly under the approaching line core at facing parts of
the screen will be opposite in sense to the core. The
pressure difference between up- and down-stream faces
will drive fluid through a “pore” , with two consequences
for vorticity. Part of the approaching vortex core will be
carried through the screen in a forward loop and fresh
vorticity will be generated in azimuthal rings over the
sides of the “pore” which will be advected out in
association with the mini-jets that penetrate the screen
and emerge downstream of it. There will also be
generation at the “pore” sides of vorticity normal to the
screen associated with the loops of incident vortex core
as they are advected through the screen. Finally, the
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forward loops have associated tangential flow over the
downstream face of the screen, with corresponding
surface vorticity. These distributions of vorticity and the
vortex filaments with which they may be related will. be
illustrated and described in greater detail, and it will be
shown that as the filaments are drawn out over each other
a series of cross-diffusive reconnections may be expected
which will leave at the screen a series of narrow closed
vorticity filaments that will quickly annihilate together
with a reconstituted line filament downstream of the
screen.

CONCLUSION

The rules for the generation of vorticity at flow
boundaries presented previously are both confirmed and
add insight to a series of applications which have been
introduced and discussed briefly.
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