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ABSTRACT

The solenoidal finite element approach is a novel idea for
the solution of viscous incompressible flows. Its name
derives from the fact that, due to the need to conserve
mass, the velocity components must have zero
divergence, a constraint which is imposed at the element
level. The main difficulty with this approach is the
construction of a specialised element in which the
velocity components are constrained to be solenoidal by
the nature of their interpolation functions. A feature of
the approach is the suppression of the pressure from the
prime solution and its subsequent retrieval in the manner
of an auxiliary variable. The validity of the approach is
demonstrated by the results for a classical benchmark
problem. Internal consistency is proved by comparisons
between solutions from different meshes. External
consistency is proved by comparisons with solutions,
both from other codes and from the literature.

INTRODUCTION

An idea which has received scant attention in connection
with finite element solutions to viscous incompressible
flows is the solenoidal approach. The attraction of this
approach is its inherent satisfaction of the continuity
constraint and its uncoupling of the pressure from the
prime solution. Early reviews (Tuann and Olson, 1978;
Norrie and de Vries, 1978) of finite element solution
methods commented on the difficulty, if not
impossibility, of the approach. Nevertheless, after
numerous setbacks, success was achieved (Mack, 1994).
In the process, the three main primitive variable
approaches (solenoidal, penalty function, Lagrange
multiplier) were unified and shown to be but different
manifestations of the imposition of the continuity
constraint (Mack, 1984).

The difficulty with the solenoidal approach centres on the
construction of an admissible element, one which
exhibits zero divergence. To date, such elements have
proved somewhat elusive. The element which is
employed here is a development of the first genuine
solenoidal element (Mack, 1990).

The solenoidal approach suppresses the pressure from the
prime solution. The velocity components are determined
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solely from their own values at the previous iteration.
Once the velocity components have been found, the
pressure can be retrieved whenever it is desired, as
though it was an auxiliary variable. Details are provided
herein of the mathematical process which achieves this.

INTEGRAL FORMULATION

Consider the steady plane laminar flow of an
incompressible Newtonian fluid whose viscosity is
constant. The governing equations for this case are

uy+vy =0, (1)
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where p is the pressure with respect to some datum, u is
the velocity component in the x direction, v is the
velocity component in the y direction, all of which have
been normalised, in doing so introducing the Reynolds
number Re.

The finite element method operates, not on the
differential equations, but on an integral formulation.
Such a formulation can be obtained from an inner
product with the arbitrary variations 8p, du, v so that
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where A is the integration domain. With the utilisation
of Green's theorem, this becomes

Part of the research for this paper was undertaken whilst the author was on leave at the
Institute for Numerical Methods in Engineering, University of Wales, Swansea, United Kingdom.
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where o, B are the direction cosines for the normal n to
the boundary s.

Although often not formulated as such, the main
primitive variable approaches all follow this path.
However, the solenoidal approach then takes the radical
step which recognises the advantage to be gained from
the imposition at the element level of velocity
components with zero divergence. If this can be
achieved, then

1
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whereupon the pressure is eliminated from the prime
solution. Note, however, that Eq. (5) is dependent on the
satisfaction, not of the solenoidal constraint (1), but of
the weaker statement

5Jp(ux+vy)dA=0. 6)
A

As already mentioned, the difficulty with the solenoidal
approach centres on the construction of an element for
the velocity components. A triangular element is
constructed in which Eq. (1) is satisfied at Gauss points
s0 that

[(ux+vy)ar=o. ©
A

(4

In this manner, the constraint is imposed both in a
collocation sense and in an integral sense. Eq. (7) is,
nonetheless, a relaxation of Eq. (1) and an approximation
to Eq. (6). Precise satisfaction of Eq. (6), and thus Eq.
(5), will occur only for constant pressure, or in the limit
as the size of the element tends to zero. Such a relaxation
is not uncommon in integral formulations for
incompressible flow. Most notably, analogous
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restrictions are found necessary in the penalty function
approach and the Lagrange multiplier approach.

The element employed here is an improved version of
that reported in earlier work. One feature is that, rather
than use a complete quartic, it uses a complete quadratic
with a quartic bubble. This provides the element with the
higher order accuracy without the drawback of the
associated higher storage requirements. Another feature
is the tighter satisfaction of Eq. (7) with double precision.

BENCHMARK TESTS

The procedure described here forms the basis of the
SOLFEM code. This produces solutions for the velocity
components and the pressure, as well as the auxiliary
quantities which are derivable from these. The entire
code is written from scratch, even to the extent of the
graphics. Solution is by means of a frontal scheme.
Convergence is considered to occur when the maximum
change in nodal values of velocity components between

successive iterations is less than 10-3.

The validity of the procedures which are implemented in
the SOLFEM code is tested by the application of the
code to the classical benchmark problem of the driven
flow in a square cavity. This flow, which is maintained
by the action of a sliding lid, is a prototype for flows with
recirculation.

Results from the SOLFEM code are provided here for
various Reynolds numbers. A solution at a particular
Reynolds number is initiated from the solution at an
intermediate Reynolds number. Convergence never takes
more than 5 iterations. Meshes are composed of almost
uniform triangle pairs. The mesh density m is the
number of these pairs along each side. Sample solutions,
for m=60 and Re=100, are presented in Figure 1 through
Figure 4. These comprise pressure contours, vorticity
contours, streamfunction contours, wall pressure
coefficient profiles and centre-line velocity profiles.
Table 1 details the properties at the vortex core. Where
necessary, the value of m is appended to the code name
to differentiate between the meshes.

Comparisons are made with the results from the
GALERKIN code, based on the standard Galerkin
(Lagrange multiplier) approach and written by the author
purely as a benchmark for the SOLFEM code. As well,
results are included from the commercial codes,
FLUENT and FIDAP. The former is a finite volume
code for which 66 x 66 cells are used. The latter is a
finite element code for which 80 x 80 elements are used.
Table 1 also includes results from the reference (Olson
and Tuann, 1979), denoted by OT.

In general, the results are in good agreement. Bear in
mind that, for each code, the mesh is, at most, slightly
graded and certainly not optimum. Also, each code uses
a different order interpolation. Therefore, any difference
between the results is likely to be related to a difference
in the resolution of the meshes. For the SOLFEM code,
Table 1 clearly demonstrates the improvement in the
solutions with the refinement of the mesh.
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Pressure contours, p=0, +Ap=.02, -Ap=.02 Pressure contours, p=0, +Ap=.02, -Ap=.02
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Vorticity contours, ®=0, +Aw=1, -Aw=1 Vorticity contours, =0, +Aw=1, -Aw=1
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Streamfunction contours, =0, +Ay=.0000001, -Ay=.01 Streamfunction contours, y=0, +Ay=.0000001, -Ay=.01

Figure 1: GALERKIN code, Re=100 Figure 2: SOLFEM code, Re=100
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v.c. properties

Re Code X y p oy

0| FLUENT | .500 .765 - - -

FIDAP 500 .766 - - -
SOLFEM30| .500 .766 - -3.23 -.100
SOLFEMG60 | .500 .766 .000 -3.22 -.100
GALERKIN| .500 .766 .000 -3.22 -.100
[OT] S50 .76 .000 -3.12 -.100

100 FLUENT | .620 .748 - - -

FIDAP .618 .731 - - -
SOLFEM30| .619 .738 - -3.19 -.103
SOLFEMG60| .616 .738 -.107 -3.17 -.104
GALERKIN| .619 .738 -.096 -3.19 -.103
[OT] 62 74 -095 -3.24 -103

400| FLUENT | .565 .601 - - -

FIDAP 563 618 - - -
SOLFEM30|( .556 .606 - -2.25 -.113
SOLFEMG60 | .553 .606 -.123 -2.29 -.114
GALERKIN| .556 .606 -.111 -2.29 -.114
[OT] S5 .60 -112 -2.32 -115

1000| FLUENT | .565 .557 - - -

FIDAP .531 561 - - -
SOLFEM30|( .531 .563 - -1.87 -.114
SOLFEM60 | .531 .566 -.119 -2.00 -.117
GALERKIN| .531 .569 -.113 -2.08 -.119
[OT] 53 .56 -.120 -2.13 -.123

20001 FLUENT | .543 .543 - -

FIDAP 521 .543 - - -
SOLFEM30| .519 .544 - -1.47 -.108
SOLFEM60| .522 .547 -.110 -1.76 -.115
GALERKIN| .525 .550 -.116 -2.02 -.122
[OT] 52 .54 -.143 268 -.136

Table 1: Properties at vortex core
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Figure 3: Wall pressure coefficient profiles, Re=100
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Figure 4: Centre-line velocity profiles, Re=100
CONCLUSIONS

A comparison of the SOLFEM results with those from
other sources shows good agreement. At this stage, any
attempt to claim more, based on these results alone,
would be invalid. The purpose of this exercise was to
validate the SOLFEM code, not to conduct a definitive
comparison of the performance of the various codes.
That is to follow. So, what then are the main features of
the solenoidal approach? The solenoidal approach
decouples the solution so that the velocity components
are determined solely from their own values at the
previous iteration. The advantage of this approach is that
there is a reduction in the dimensions of the problem,
with a consequent reduction in the storage requirements.
This whole concept is not restricted to viscous flows, but
is applicable wherever there is a similar pairing in the
governing equations of a pressure-like term with a
velocity-like divergence term.
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