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ABSTRACT

A finite element simulation of the Weissenberg effect,
i.e. the rod climbing of viscoelastic fluids, is pre-
sented. The flow features axisymmetric swirling, free
surface, gravity, surface tention, centrifugal force and
all six viscoelastic stresses. An operator splitting al-
gorithm is employed to solve the non-linear system
of equations governing the upper-convected Maxwell
or the Phan-Thien—Tanner fluid. An orthogonal tra-
jectory scheme applicable to unstructured as well as
structured grids is adopted to construct the mesh af-
ter each free surface updating. Comparison between
numerical and experimental results shows good agree-
ment.

INTRODUCTION

It is well known that fluids with complex structure,
such as macromolecular solutions and melts, behave
in unexpected ways which can not be described by
Newton’s viscous law. The Weissenberg effect (Weis-
senberg 1947) is one of the most interesting phenom-
ena exhibited by non-Newtonian fluids: certain vis-
coelastic fluids in a cylindrical vessel will climb up
a rotating rod against centrifugal force and gravity.
The rod-climbing is one of the many second-order ef-
fects associated with the inequality of normal stresses
in shear flow (Brid et al 1987, Tanner 1985). It was
suggested (Barnes el. 1989) that the normal stress
acts like a hoop around the rod and forces the fluid
inwards against the centrifugal force and upwards
against the gravitational force. Numerical, analyti-
cal and experimental studies of this phenomena will
improve the understanding of the rheological proper-
ties of non-Newtonian fluids and enable us to better
predict many natural and industrial non-Newtonian
flows.

The present work explores new ways to overcome
the difficulties encountered in rod-climbing simula-
tion. An elaborate mesh updating scheme is devel-
oped to minimize mesh distortion by making use of
orthogonal or nearly orthogonal trajectory functions.
Both the structured quadrilateral mesh and the un-
structured triangular mesh will be used in the simula-
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tion to check the mesh-independence of the solutions.

GOVERNING EQUATIONS
The motion of an incompressible viscoelastic fluid is
governed by the following equations

du
p[a +(u-V)ul —nAu+Vp=pg+ V-7 (1)

Vau=0 (2)

where 77 is the sum of solvent and molecular viscosi-
ties, u is velocity, p is pressure, g is gravity and 7 is
the extra viscoelastic stress tensor defined by,

T=0+pl—2nd (3)
where o is the total stress tensor. For UCM fluid the
extra viscoelastic stress satisfies the following consti-
tutive equation

)\(%+u-VT—Iﬂ'-—TLT)+T

d
_2’\""‘(%7 +u-Vd-Ld - dL%)

(4)
where )\ is the relaxation time, 7}, is the molecular
viscosity, L = Vu” is the velocity gradient tensor,
d = (L + LT)/2 is the rate of deformation tensor.
The Phan-Thein-Tanner (PTT) model can also be ex-
pressed in terms of 7

)\[%% +u-Vr—(L-¢d)r—r(L-&ed)7] +

[1+ (eA/nm)tr7]T + (2eAtrT)d =
—2Anm[g—‘: +u-Vd— (L—£&d)d —d(L - ¢d)”]

where {77 is the trace of T, £ is a material param-
eter controlling the ratio of second to first normal
stress difference, and € is related to elongational vis-
cosity. In the case of axisymmetric swirling flow, we
have altogether ten unknown variables: three velocity
components U,, U, and Uy, pressure P and six extra
viscoelastic stresses Trr, Trz,T2z,708, Tro and T.g.
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Figure 1: An illustration of orthogonal trajec-
tory mesh.

NUMERICAL SCHEME

An operator splitting algorithm (Dean et al. 1988,
Luo 1996) is employed to solve the non-linear system
of equations governing the upper-convected Maxwell
or the Phan-Thien—Tanner fluid. Our free surface
scheme mainly consists of three steps:

I) track explicitly the moving boundary and generate
an intermediate mesh in the new domain;

II) find a pair of orthogonal or nearly orthogonal
trajectory functions in the new domain using the in-
termediate mesh;

I1T) adjust the mesh according to the orthogonal tra-
jectories to minimize mesh distortion while maintain-
ing the free surface shape.

We will adopt Fastflo’s existing free surface mod-
ule (Mooney & de Hoog, 1995) to track the moving
boundary, in which we solve for a normal displace-
ment function h(s) on the free surface satisfying the
differential equation

2

g—:—a % =u"'.n on 60, (6)
With normal displacement of free surface known, the
mesh displacement function 6X = (6X , §Y) on 662
can be found accordingly, and this function enables
us to build a new mesh on the new domain (¢ + dt).

Next we seek a pair of orthogonal functions by solv-
ing Laplace equations with the following boundary
conditions, as shown in Fig. 1,

h

n+1
-t
PTHL

=0 on AB, ¥ =1 on
VP -n=0 on AD and
®=0 on AD, ®=1 on
v® -n=0 on AB and DC

SIS

Finally we carry out an iterative process to re-
locate the nodal points so that their trajectory
coordinates(¥ , ®) recover the initial values and the
orthogonality of the structured grids is preserved and
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Figure 2: Triangular meshes updated with (a)
and without (b) orthogonal trajectory adjust-
ment.

the distortion for unstructured grids is reduced. In
Fig. 2 an unstructured triangular mesh updated with
orthogonal trajectory scheme is compared with one
updated without orthogonal trajectory adjustment.
The distortion of the latter is significant.
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Figure 3: Flow description and boundary con-
ditions.

RESULTS

The flow description and boundary conditions are
shown in Fig. 3. A rod of radius R rotates at a
constant angular speed w about the axis of a station-
ary cylindrical vessel containing a viscoelastic fluid.
Four dimensionless numbers are needed to character-
ize the rod climbing flow: the Weissenberg number
Wi, Reynolds number Re, Stokes number St and the
capillary number Ca, which are defined as follows:



Wi = Aw
Re — wR?
T,‘

— W
St —"‘—MR
Ca = zp‘t-li_R

Our numerical study mainly consists of two parts:
firstly the Maxwell model is used to solve the rod
climbing problem under the conditions of creeping
flow (Re = 0), zero surface tension (C'a = o0) and
low angular speed, and the results are compared with
perturbation theory which is valid only for small an-
gular speed. In the second part of our numerical
study the PTT model is used to simulate some real ex-
periments of rod climbing flow by Beavers and Joseph
(1975), taking into consideration all the important
factors affecting the flow: surface tension, gravity,
centrifugal force and second normal stress difference.

Fig. 4 compares the numerical and analytical pre-
dictions on the free surface shape, which shows the
two agree very well. At low W1 the free surface
shows a 1/?’4 dependence, except near the contact
point where the numerical simulation predicts a flat
angle (90?) while analytical one does not.

The difference in contact angle between numerical
and perturbation analysis is an interesting one and
worth some comments: experimental observations (
Beavers and Joseph 1975) reveal that if there is no
static wetting due to surface tension, i.e. no initial
climbing when the fluid is stationary (w = 0), the
contact angle at the rod remains flat (90°) after the
climbing and the free surface shape near the rod is
convex. Since both numerical and analytical results
in Fig.4 are based on zero static climbing (due to zero
surface tension), the above experimental observation
means our numerical prediction is more realistic than
the perturbation analysis.
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Figure 4: Predictions of the free surface shapes.
A, this work using UCM;
—, theory (Beavers and Joseph 1975).

To realistically simulate the experiments of Beavers
and Joseph (1975), the PTT model was used to
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cope with the non-zero second normal stress differ-
ence. In the experiments reported by Beavers and
Joseph (1975), STP (a 26.6% polyisbutylene solu-
tion in petroleum oil) was used, for which the fol-
lowing material constants were given at temperature
25.5°C":

p=0.89g cm™3

1 =1ns + Nm = 146 poise

I' =30.9 dyn cm s—2

(1- 1—;"":)/\ = 0.0162 s

where 7); is the newtonian solvent viscosity. The ra-
dius of the rod is R = 0.635¢m, the cylindrical vessel
has a radius of Ry = 15.25 c¢m, and the height of
the fluid at rest is 7.7 cm.

Four material parameters in the PTT model need
to be determined or estimated before starting the sim-
ulation: 7m, A, £ and €. In the absence of direct
experimental data, we have let € = 0 and taken the
commonly used ratio 7s/fm = 1/9 to determine 7,
from n = ns + Mm = 146 poise and the relaxation
time A from (1 — %":—‘)/\ = 0.0162 s.

The second normal stress parameter £ can be esti-
mated from the climbing constant given by the per-
turbation theory:

=10 - =)@ - 2¢) (7)
Mm

where ﬁ is the climbing constant which can be mea-

sured by carrying out low angular speed experiments.

For the case of STP at temperature 26°C the experi-

mental value of,é was found to be ,é = 1.02 ( Beavers

and Joseph 1975), from which and Eqn.(23) we get an

estimate of £ = 0.284. At 26°C a (3 value of 0.86
gives £ = 0.318.
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Figure 5: Predicted free surface profiles in com-
parison with experimental measurements with
R =0.635

—, triangular mesh with £ = 0.318;

+, quadrilateral mesh with £ = 0.318;

— — —, triangular mesh with £ = 0.284,

& measurements by Beavers and Joseph (1975).

Figure 5 compares the predicted free surface pro-
files with experimental measurements with R



0.635, showing computational results of both trian-
gular mesh and quadrilateral mesh. The maximum
absolute difference in climbing height between our
prediction and the measurement is less than half a
millimeter. Fig. 6 shows the final quadrilateral mesh,
the final triangular mesh and the velocity vectors
(in the r — z plane) in the region near the contact
point for the case of w = 2.60 (rev. s~!) with
£ = 0.318. One can see the quality of the triangular
mesh is still good after the relatively large deforma-
tion of the domain due to free surface movement, and
the orthogonality of the quadrilateral mesh is pre-
served. Fig. 7 compares the numerically predicted
three-dimensional free surface with the photograph
presented by Beavers and Joseph (1975). The simi-
larity of the two is satisfactory, apart from the appar-
ent reflection in the lower half of the photo and some
other optical effects in the photo.

CONCLUSION

Full finite element simulations of steady state rod-
climbing flow have been performed using UCM and
PTT models. The predictions are in good agreement
with second-order theory and experimental data. The
orthogonal trajectory scheme developed in this work
is applicable to unstructured triangular mesh as well
as structured quadrilateral mesh, and it provides flex-
ibility and good quality in mesh updating for success-
ful numerical simulation of free surface flow involving
relatively large deformation in the domain. Without
using the orthogonal trajectory scheme the simulation
failed to converge even for very moderate climbing
height.
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Figure 6: Final quadrilateral mesh (a), trian-
gular mesh (b) and the velocity vectors (c) near
the rod-fluid contact corner for the case of w =
2.60 (rev. s~1) with £ = 0.318.

Figure 7: Three-dimensional free surface shapes
for the case of R = 0.476 cm, w = 5 (rev. s71).
top: photo by Beavers and Joseph (1975);
bottom: this work with £ = 0.318.



