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ABSTRACT

The transient flow of immiscible liquid layers over a weir
was investigated. The solution was calculated by solving
the transient 2-D Cartesian equations of motion and
continuity for incompressible flow, using the Volume of
Fluid (VOF) method of Youngs (1982) and a stair-step
representation of flow obstacles. Flow over a weir was
investigated for the case where initially the liquid height
of liquid is 25 percent greater than the weir height, while
the liquid-liquid interface is located at a position 90
percent of weir height. Simulation results showed good
agreement with experimental video images and
measurements. Entrainment of the bottom liquid in the
top liquid stream flowing over the weir occurred, despite
the liquid-liquid interface initially being below the top of
the weir.

INTRODUCTION

In a number of pyrometallurgical unit operations, there is
a need to separate immiscible liquid layers. An important
example is the need to separate waste slag from matte in
the Peirce-Smith converter used in copper production.
The converter is rotated and the overlying slag layer is
poured out, leaving behind the valuable matte. It is
desirable to remove only the slag during pouring, but
matte entrainment makes this impossible. An
understanding of entrainment during pouring processes
would assist in optimising the loss of valuable matte to
slag.

As a first step in studying the Peirce-Smith converter, we
consider the flow of liquid over a weir. The study of the
flow of immiscible liquid layers over a weir will provide
an insight into entrainment seen in pouring operations in
metallurgical processes.  Although there is a large
amount of literature of steady flows over a weir with one
liquid, it was decided to test the code with a multi-liquid
flow, as experimental data was readily available.

The presence of multiple fluids, complex fluid topologies
and flow obstacles makes multi-liquid flow over a weir a
challenging computational problem. Previous attempts at
modelling this flow have been based on correlations and
simplified flow models. No known attempts have been
made to capture the heavy liquid entrainment associated
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with multi-liquid flow over a weir. Entrainment is a
highly transient phenomenon, and steady state or
averaged analogies to its modelling are totally
inadequate. This means CFD simulation based on the
full transient incompressible non-linear Navier-Stokes
equations is required. Volume of Fluid (VOF) methods
(Hirt and Nichols, 1981; Rudman, 1997) have proven to
be valuable in simulating many real free surface flows,
such as splash formation (Morton, 1997; Morton et al.,
1997) and jet-induced tank flows (Kothe et al., 1991).
The need to efficiently handle complex flow topologies
and surface tension make VOF methods the best option
for simulating flow over a weir.

NUMERICAL METHOD

Governing Equations

The numerical scheme directly solves the equations
describing mass and momentum conservation for
incompressible isothermal multi-fluid flows
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where U is the velocity field, P is the pressure, T is the
viscous stress tensor, g is the gravity vector, S is the
surface acceleration due to surface tension, and p is the
density.

For flows involving multiple immiscible fluids, a colour
function distribution is defined

1 in cells full of a particular fluid 3
" 10 in cells devoid of that particular fluid 3
C takes the values 0 < C < 1 on interfaces. For

incompressible flow, species mass conservation requires
C to satisfy

ac

= +V.(UC)=0 (4)
Physical properties such as density and viscosity are
recovered as weighted averages based on local values of
C (for n fluid species and n-1 colour functions) -
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Solution Algorithm

A two-step projection is used to solve the governing
equations. Given the values of all variables at time n, the
solution is advanced to time n+1 as follows:

1. Determine the fluid topology by advecting all colour
functions:
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2. Compute new density and viscosity distributions using
equations (5) and (6), based on C™'.

3. Make an initial estimate of the velocity field (U*),
based on the solution at time n (U* is typically not
solenoidal)

1
—VIUUV1—~;VP”
Ux=U"+& # i

1
=R kgt

P p

4. Solve the Poisson equation for the pressure correction
(8P) to ensure continuity is satisfied
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5. Update the velocity field and pressure distribution to
time n+1
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The solution algorithm as described in first order in time.
Euler's improved time-stepping scheme is implemented to
improve temporal accuracy to second order. Steps (3) to
(5) are done twice - firstly with a half time-step, and
secondly with a full time-step, but using values of U, P, p
and L from the half time-step solution.

The solution algorithm uses spatial discretisations based
on a uniform staggered MAC mesh (Welch et al., 1966).
Scalar values are located at mesh cell centres, while
velocities are located at the centre of cell edges.
Discretisations of the equations in the solution algorithm
are done using finite differences.

VOF Advection

The accuracy of VOF and interface tracking depend on
the colour function advection scheme used. Best results
are obtained using advection schemes specifically
designed for colour function advection (Morton, 1997),
rather than using arbitrary scalar advection schemes. The
VOF advection scheme of Youngs (1982) has been
shown to be accurate for VOF advection in two-
dimensional flow simulations. This scheme is based on a
piecewise linear reconstruction of interface cells, with
interfacial line segment orientation estimated using
weighted averaging based on C in surrounding cells. The
method as first outlined by Youngs was only one-
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dimensional: direction splitting is implemented here to
apply the procedure to two-dimensional flows,

Momentum Advection

In the momentum equations, centred differencing is used
where possible in order to achieve second-order spatial
accuracy. For the non-linear momentum advection terms
however, centred differencing is unconditionally
unstable. First-order upwinding, while stable, is
unacceptably diffusive. In the code, a second-order van

Leer's scheme is used (van Leer, 1977). Geometric

limiters based on local gradients are computed to
maintain stability by preserving monotonicity. The
limiter is then used in combining second-order spatial
accuracy from centred differencing with sufficient first-
order upwinding to avoid instability.

Flow Obstacles

Obstacles to flow within the computational flow domain
are modelled using a "stair-step" approach. Mesh cells
lie either completely within the fluid or completely within
the obstacle. Each fluid cell in the flow domain is
flagged 1, while each obstacle cell is flagged 0. Using
these flags enables fluid and obstacles cells to be
distinguished. = Boundary conditions are applied in
obstacles cells flagged to be adjacent to fluid cells.
Discretisations of the governing equations are modified
to account for the control volume areas and cell faces
blanked out by obstacles.

Pressure Correction Solver

Poisson’s equation is discretised about mesh cell centres
using a 5-point stencil. Neumann boundary conditions
are set explicitly. The discretisation of Equation (8)
yields a linear equation system of the form
Ax=bh (1)

where the stiffness matrix A is a sparse, banded,
symmetric and positive-definite matrix. ~ Conjugate
gradient (CG) methods are thus well suited to solving the
linear equation system. A multigrid preconditioned
conjugate gradient (MGCG) method was implemented,
using the algorithm as outlined by Tatebe (1993). The
preconditioning of the residual vector is done using one
multigrid V-cycle per CG iteration. The MGCG solver
developed combines the robustness of conjugate gradient
methods with the superior scaling of multigrid methods.
The result is that high-resolution simulations can be
handled in a reasonable amount of time.

PROBLEM SETUP

The code based on the numerical methods outlined is
applied to the flow of liquid over a weir. The problem
initialisation is illustrated in Figure 1. At the start of the
experiment, all liquid is held back by a gate closing on
top of the weir. The gate is lifted at time t = 0, allowing
liquid to fall over the weir under gravity. The height of
the weir is 200mm, and its width is 12mm. The weir is
located 300mm away from the fixed retaining wall.
Initially with the gate closed, the heavier fluid is filled to
a height of 180mm, ie. 20mm underneath the top of the
weir. A lighter liquid layer of depth 50mm is then placed
over the top of the heavier layer. The right and bottom
walls of the computational flow domain are simulated as
no-slip boundaries. Flow dynamics in the air away from



the liquid are relatively unimportant, so the left and top
boundaries are simulated as free-slip boundaries. The
obstacle itself is treated as a no-slip boundary, The left
and top boundaries are located far enough away from the
obstacle, such that gas dynamics that develop resulting
from the presence of free-slip walls instead of open
boundaries have little effect on the liquid flow over the
weir. The schematic diagram of the simulation setup is
shown in Figure 1 below. The mesh resolution used for
the simulations was 256x128 cells.
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Figure 1 : Schematic diagram of simulation set-up.

Surface tension is not important for this problem, and is
neglected. Water is used as an overlying light liquid
layer, and a salt solution is used as an underlying heavy
liquid layer. Relevant physical property data is given in
Table 1 below

Density Viscosity
(kg/m’) (cP)
Air 1.204 0.0181
Light liquid 997 0.9997
Heavy liquid 1147 1.75

Table 1: Physical property data.

SIMULATIONS FOR 20mm SUBMERGENCE

Figure 2(a) shows the predicted interfacial profiles at
selected times after the gate is opened. Figure 2(b)
displays video images of the interfacial profiles at the
same times. As can be seen, the numerical and
experimental results compare favourably. The top layer
is seen to fall over the weir under gravity, initiating a
horizontal flow of the top liquid over the weir. The
horizontal flow of the top liquid drives the flow of the
bottom liquid in the same direction. The bottom liquid
adjacent to the weir rises and is entrained in the flow of
the top liquid over the weir. This is the only mechanism
of entrainment witnessed: no entrainment resulting from
Kelvin-Helmholtz instability is apparent. The flow of the
heavier bottom liquid over the weir starts to recede after
about t = 0.5 sec. Entrainment of the heavier liquid
ceases soon after t = 0.8 sec. The liquid-liquid interface
adjacent to the weir falls, initiating a back-wave. The
liquid-liquid interface on the right side of the weir is
faithfully represented, as is the top free surface. This is
shown in Figure 3, which compares interfacial positions
for given horizontal coordinates obtained from simulation
and experiment. As can be seen, the results seen in
Figure 3 are in good agreement. The solutions to the
velocity fields, pressure distributions and- fluid
distributions are coupled, as seen in the solution
algorithm. Errors in the velocity fields introduce error
into the interface tracking. @ The simulation and
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experimental interfaces closely correspond  after
thousands of timesteps in the simulation, suggesting the
velocity and pressure solutions are accurate. Future work
in measuring the velocity field by PIV techniques is
being planned. The results in Figures 2 and 3 validate
the numerical schemes used in the code, and enable the
code to be used with confidence in analysing the flow of
immiscible liquid layers over a weir.

.45 05 (133 054

t=0.50 sec

@ ®

Figure 2: Comparison of (a) numerical
experimental interfacial profiles.

and (b)

Having validated the numerical method, the code is used
to analyse the mechanism of entrainment of the bottom
liquid in the flow over the weir. Figure 4 shows the flow
field at t = 0.5 sec in more detail, including streamlines,
velocity vectors and dynamic pressure contours. Velocity
vectors in the liquid are largest in the top liquid as it is
about to drop over the weir. This indicates that there is
acceleration of the liquid as it falls over the weir. The
result is a drop in the pressure of the liquid just above the
weir. A pressure gradient is set up between the liquid
above the weir and the liquid behind the weir. This is
apparent looking at the dynamic pressure contours, with
contour levels in the liquid decreasing as the flow
approaches the top of the weir. The decreasing pressure
gradient accelerates liquid adjacent to the weir in an
upward direction, as can be seen by the direction of the
streamlines. The pressure gradient is sufficient to take
the heavier bottom liquid above the top of the weir. This



bottom liquid is then entrained in the top liquid falling
under gravity over the weir.
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Figure 3: Interfacial positions above the bottom wall for
given horizontal coordinates, for (a) 0 mm and (b) 30
mm from the right wall of the obstacle respectively.
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Figure 4: Interfacial profiles, velocity vectors,

streamlines and pressure contours for the flow ficld at t =
0.5 sec.

CONCLUSION

A numerical method has been developed to simulate the
flow of immiscible liquid” layers over a weir.
Experiments of this flow over a weir were run, where a
liquid body consisting of a 180 mm thick bottom layer
and a 70 mm thick top layer are obstructed from falling
under gravity by a 200 mm high and 12 mm wide weir.
The code has been validated by comparisons between
simulation results and results obtained from video images
of the experiments. Entrainment of the bottom liquid in
the top liquid is seen despite the liquid-liquid interface
initially being below the top of the weir. The code
enables us to visualise the mechanism of entrainment of
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the bottom liquid in the top liguid stream flowing over
the weir. The pressure gradient in the liquid adjacent to
the weir is sufficiently strong to pull heavier liquid from
over 20mm underneath the top of the weir, These results
demonstrate the power of the code, and its potential for
enabling selective withdrawal of the top liquid to be
predicted.

ACKNOWLEDGEMENTS

Financial support for this work was provided by the
Australian  Minerals Industry Research Association
(AMIRA) using facilities provided by the G.K. Williams
Cooperative Research Centre for Extractive Metallurgy, a
joint venture between CSIRO Minerals and the
Department of Chemical Engineering, The University of
Melbourne.

REFERENCES

HIRT, C.W. and NICHOLS, B.D., “Volume of Fluid
(VOF) Method for the Dynamics of Free Boundaries”, /.
Comp. Phys., 39, 201-225, 1981.

KOTHE, D.B., MJOLSNESS, R.C. and TORREY,
M.D.,  “RIPPLE: A  Computer  Program  for
Incompressible Flows with Free Surfaces”, LA-12007-
MS, Los Alamos National Laboratory, 1991,

MORTON, D.E., “Numerical Simulation of an
Impacting Drop”, PhD Thesis, University of Melbourne,
Parkville, 1997,

MORTON, D.E., RUDMAN, M.J. and LIOW, ].-L., “A
Finite Difference Method for Modelling Impacting
Drops”, The 1997 ASME Fluids Engineering Division
Summer Meeting, June 22-26, ASME, 1997.

RUDMAN, M., “A Volume-Tracking Method for
Incompressible Multi-Fluid Flows with Large Density
Variations”, submitted to the Inr. J. Num. Meth. Fluids,
1997,

TATEBE, O., “The Multigrid Preconditioned Conjugate
Gradient Method”, Proceedings of the Sixth Copper
Mountain Conference on Multigrid Methods, (Eds. N.D.
Melson, T.A. Manteutfel and S.F. McCormick), 621-634,
1993.

VAN LEER, B., “Towards the Ultimate Conservative
Dilference Scheme 1V, A New Approach to Numerical

Convection”, J. Comp. Phys., 23, 276-299, 1977.

WELCH, J.E., HARLOW, F.H., SHANNON, I.P. and

DALY, B, “The MAC Method: A Computing
Technique  for  Solving  Viscous,  Incompressible,
Transient  Fluid-Flow  Problems  Involving  Free

Surfaces”, Los Alamos Scientific Laboratory Report LA-
3425, 1966.

YOUNGS, D.L., “Time-Dependent Multi-Material Flow
with Large Fluid Distortion™, Numerical Methods for
Fluid Dynamics, (Eds. K.W. Morton and M.J. Baines),
Academic, 273-285, 1982,



