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ABSTRACT

Contact surface instabilities which occur in a rotating
shock tube are analyzed by numerical simulation. Two
types of instability have been identified: Richtmyer-
Meshkov and Rayleigh-Taylor. The Richtmyer-Meshkov
instability was found to be an inviscid phenomenon
which can be eliminated by the addition of a small
amount of viscosity to the flow. The Rayleigh-Taylor
instability was found to be sensitive to the levels of both
viscosity and thermal conductivity.

INTRODUCTION

Shock waves and steep pressure gradients occur in high
speed machinery and pipe flows. A frequently used test
case for shock wave flow is the shock tube (Liepmann
and Roshko, 1957). This is a long, thin channel, closed
at both ends with a diaphragm separating two gases at
different states. When the diaphragm is suddenly
removed, a shock wave propagates through the gas at the
lower pressure and a rarefaction wave through the higher
pressure gas.

The one-dimensional inviscid shock tube problem is well
understood (Liepmann and Roshko 1957). For the two-
and three-dimensional problem, both the inviscid and
viscous shock tube problems have also been extensively
studied numerically and experimentally (see, for
example, Glass and Patterson (1955) and Sharma and
Wilson (1995)). However, little work has been done on
an apparently simple abstraction of the standard shock
tube problem, that of the rotating shock tube (see Figure
1), with only a few studies to be found in the open
literature.
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Figure 1 : Schematic diagram of rotating annular shock
tube. Ry = radius of outer wall, Ry = radius of inner wall.

Larosiliere and Mawid (1995) performed a numerical
study of inviscid flow flow in an annular cylindrical
shock tube rotating about its central axis (see Figure 1).
The investigation focused on how the shock “leans” and
forms an “S” shape due to the three dimensional effects
caused by the rotation. They also found that the
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temperature ratio has a dramatic effect on the stability of
the contact surface. It was suggested that if, initially, the
high pressure side was hotter than the low pressure side,
then the contact surface would be unstable after
interacting with either the shock or rarefaction waves.

A numerical study of the flow in a rotating annular shock
tube is described here. In particular, the contact surface
instability noted in previous studies has been explored in
some detail.

NUMERICAL METHOD

Numerical simulations were performed using the
commercial finite-volume Navier-Stokes solver CFX4.2.
A simple rectangular grid in cylindrical coordinates is
used to discretize the volume, with constant grid spacing
in the axial direction and radial directions. The results
presented by Larosiliere and Mawid (1995) suggest that
the flow is axisymmetric, and so periodic boundary
conditions are used in the circumferential direction. The
spatial gradients are calculated using the higher-order
‘Superbee’ upwind scheme, with a flux limiter. It is
second-order accurate, Temporal integration is
accomplished using implicit backward differencing,
which is first-order accurate in time.

The permissible time-step, Ar, is dependent on the
individual problem, with the Courant-Friedrichs-Lewy
(CFL) criterion being the fundamental limiting factor for
the flow, that is, UAt/Ax < 1, where U is the maximum
velocity and Ax is the minimum grid element length.

The physical geometry of the domain is a circular
annulus, as shown in Figure 1. For all models performed
in this paper, the shock tube length is L = 1.0 m, the
diaphragm is placed at L/2, the aspect ratio L / Ry is 1.5,
and the radius ratio Ry / Ryis 0.934.

The numerical model uses primitive variables, hence no
non-dimensionalisation scheme is required. However, for
ease of comparison, the time used in this paper will be
non-dimensionalised as t* = t a../ L, where t* is the non-
dimensional time, ¢ is the dimensional time and . is the
reference acoustic velocity, defined as that which exists
at the axis of rotation on the low pressure side. The
rotational speed of the annulus, £2,is represented by the
outer wall Mach number, Mo= Q2 Ry /a..

The initial condition is defined as constant total enthalpy
in a rotating frame of reference, also known as constant
rothalpy (Larosiliere and Mawid, 1995). Isothermal
initial conditions, which are modeled for some of the



simulations involving thermal conductivity, are found to
have no significant effect on the results.

VALIDATION

To assess the accuracy of the simulation, the code was
used to solve a one-dimensional inviscid shock tube
problem, with no rotation or heat transfer. The results
from the code are compared with the analytical solutions
in Figure 2. The initial conditions used are P;=100kPa,
T,=288K on the low pressure side and P,=200kPa,
T,=288K on the high pressure side. The figure
represents the situation at t* = 0.25. The agreement
between computation and theory is good with minor
differences near the shock, contact surface and
rarefaction wave. It is found that the shock and contact
surface are smeared over four mesh points regardless of
mesh density. Figure 3 shows the effect of increasing the
number of mesh points. The shock front steepens, in
closer agreement with theory, but this causes an
overshoot in the pressure distribution downstream of the
shock. This could be eliminated by adding some artificial
viscosity to increase the dissipation. For reasons that will
become apparent, it was decided not to do this.
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Figure 2 : Pressure and density distributions for one-
dimensional shock tube simulation using a 400 node
mesh at r* = 0.25.

RESULTS AND DISCUSSION

Numerical simulations have been performed for the
rotating shock tube configuration considered by
Larosiliere and Mawid (1995). Figure 4 shows the
density contours for pyp, = 2.0, T»/T; = 1.0 and
Mg = 1.0, which may be compared directly with their
Figure 4. The time steps shown are for t* = 0.25, 0.5,
0.75 and 1.0. The mesh was the same as that used by
Larosiliere and Mawid, 450x30 in the longitudinal and
radial directions, respectively. The viscosity (10 Pa s)
and thermal conductivity (10% W m?' K were
effectively zero. The results from the current code are
essentially identical to the previous work, except for the
final time step. The shock wave travels from right to left
along the shock tube, while the rarefaction wave travels
from left to right. The contact surface also travels from
right to left, albeit at a much slower rate than the shock.
The contact surface leans because of the small initial
density variation across the tube which leads to the axial
velocity near the inner wall being less than that at the
outer wall. After the shock has been reflected from the
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end wall, it travels back along the tube and passes
through the contact surface. Larosiliere and Mawid
observed the contact surface to remain smooth and to
retain an “S” shape, whereas here, the contact surface has
a small instability superimposed on this “S” shape,
located slightly below the centre of the channel. A
magnified view of the contact surface is shown in figure
5. The perturbation on the “S” shape is believed be a
Richtmyer-Meshkov instability (Richtmeyer, 1960;
Meshkov, 1969), caused by the reflected shock traveling
through the distorted contact surface.
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Figure 3 : Effect of increasing mesh density for one-
dimensional shock tube problem, 1* =0.25.

When the present simulation was run again, using a
viscosity equal to 1.788x10” Pa s (corresponding to that
for air at 288K)) and restarting from ¢* = 0.75, the contact
surface was found to be the same leaning “S” shape, but
without the small roughness near the centre of the contact
surface, that is, the same result as the previous work. A
magnified view of the contact surface from this viscous
simulation is shown in figure 6. Larosiliere and Mawid
specifically add a “small amount of fourth-difference
artificial dissipation...to suppress non-linear instabilities”.
It appears that, in their calculations, this dissipation
damps out the instability observed in Figures 4 and 5.
Yet, for an inviscid and zero heat transfer solution, these
instabilities are inherent in the flow. The addition of a
small amount of viscosity, whether artificially
(Larosiliere and Mawid), or purposefully (present study),
is therefore sufficient to damp out this particular
instability.

Larosiliere and Mawid noticed that if the initial
temperature ratio, 7»/T;, was greater than unity, then the
contact surface became unstable. This instability was
only evident in one of their figures and they did not
suggest a reason for its cause. In the present
investigation, it was found for initial temperature ratios
greater than unity that, in some instances, the contact
surface become unstable before any waves had passed
through it. This instability also occurred even if the
viscosity of the fluid or the thermal conductivity was
raised to levels far in excess of those experienced in air at
the same conditions.
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Figure 4 : Density contours for rotating shock tube with p, /p; =2.0, T, /T; = 1.0 and Mg = 1.0. Time increasing down the
page with t* = 0.25, 0.5, 0.75 and 1.0. SW = shock wave, CS = contact surface, RW = rarefaction wave.

Figure 5 : Magnified view of the contact surface at t* =
1.0 from Figure 4.

Figure 6 : Magnified view of the contact surface at t* =
1.0, where the simulation was restarted from r*=0.75 in
Figure 4, now using laminar viscosity = 1.788x10” Pa.s.

An example of this is shown in Figure 7, where the initial
conditions are p, /p; = 2.0, T,/ T; =4.0 and Mg = 1.0.
The time steps shown are t* = 0.0638, 0.1276, 0.1913
and 0.2551. The contact surface leans in the opposite
direction to that seen in Figures 4-6. The reason for this
is unclear at this stage. Neither the shock nor the
rarefaction wave have interacted with the contact surface
during this time. However, as can be seen on the
magnification of the density contours at the final time
step (Figure 8), the contact surface has started to become
unstable. The mechanism of this instability is very
different to the instability visible in Figures 4 and 3, as it
is not triggered by interaction with any waves. It is
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Figure 8 : Magnified view of the contact surface at t* =
0.2551 forp, /p;=2.0,T,/T;=4.0and Mg=1.0.

believed that this is a type of Rayleigh-Taylor instability,
that is analogous to a dense gas initially above a lighter
gas in a gravitational field. Here, the centripetal force acts
in a similar manner to gravity.

From the magnification of the contact surface (Figure 8),
it can be seen that the instability starts at the outside rim
of the tube. The bulk fluid flow is from right to left, but
the start of the instability is a small jet, which flows
against the general fluid stream from left to right. The
instability continues to grow from that shown in Figure 8,
until the instability consumes the entire contact surface,
at approximately t* = 0.9 (Figure 9). The instability

Figure 9 : Magnified view of the contact surface at 1* =
0.8930 forpz /p] = 2.0, TZ /T] =4.0 and M_Qz 1.0.
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Figure 7 : Density contours for rotating shock tube with p, /p; =2.0, T, / T; = 4.0 and Mgy = 1.0. Time increasing down the
page with t* = 0.0638, 0.1276, 0.1913, 0.2551. SW = shock wave, CS = contact surface, RW = rarefaction wave.
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Figure 10 : Magnified view of the contact surface at t* =
0.2551 for p; / p; =20, T,/ T; = 4.0 and Mg = 1.0,
viscosity = 1.788x10" Pas.

stops growing, and now causes bulk mixing of the flow,
effectively broadening the contact surface.

The effect of viscosity was investigated for the high
temperature ratio problem (pyp; = 2.0, T/T; = 4.0 and
Mgs = 1.0), with the viscosity ranging between
1.788x10° Pa s and 1.788x10"' Pa s. The thermal
conductivity was set to zero for all these simulations. As
the viscosity was raised, boundary layer effects increased,
distorting the contact surface into a “c” shape. The
instability was present until the viscosity was 1.788x10™!
Pa.s (10 times that of air at 288 K), where the highly
viscous fluid stopped the instability from forming (see
Figure 10).

The effect of thermal conductivity was investigated for
the high temperature ratio problem (pxp; = 2.0,
T+T; = 4.0 and Mg = 1.0), with the thermal conductivity
ranging between 2.531x107 W m'K' and
2.531x10° Wm'K™'. The viscosity was set to zero for all
these simulations. As the thermal conductivity was
raised, the contact surface started to broaden as the
effects of thermal conductivity started to become
significant across the contact surface. For a thermal
conductivity equal to 2.531x10* W m™'K™' (10* times that
of air at 288 K), the contact surface had broadened
sufficiently to prevent the instability from forming (see

Figure 11).

Figure 11 : Magnified view of the contact surface at t* =
0.2551 for p, / p; =20, T, /T, = 4.0 and Mg = 1.0,
thermal conductivity =2.531x10* W m'K"".

It is clear from the results shown above that the
instability is not a Prandtl number effect - viscosity acts
on distorting the contact surface due to friction at the
wall, preventing the instability occurring; and thermal
conductivity acts on the contact surface by broadening
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the temperature gradient, stopping the instability. They
are separate and independent actions.

CONCLUSION

The contact surface instabilities noticed by Larosiliere
and Mawid (1995) in a rotating shock tube has been
studied in greater detail. It has been found that the
instability takes two forms: Richtmyer-Meshkov and
Rayleigh-Taylor. The Richtmyer-Meshkov instability is
caused by the interaction of the shock wave with the
contact surface and could be eliminated by the addition
of a small amount of viscosity. For this reason, it is
suggested that the artificial viscosity employed by
Larosiliere and Mawid did not permit them to see this
form of instability. The Rayleigh-Taylor instability is
caused by the centrifugal force acting in a similar manner
to gravity in natural convection. Varying the viscosity
and thermal conductivity altered the shape of the contact
surface, causing curvature of the contact surface near the
wall and contact surface broadening, respectively. In
contrast to the Richtmeyer-Meshkov instability, the
Rayleigh-Taylor instability was found to occur even
when the viscosity (and also the thermal conductivity) of
the simulated gas was raised to values far in excess of air.
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