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ABSTRACT

Computational linear stability results are presented
for the flow over a backward-facing step with an ex-
pansion ratio (outlet height to inlet height) of two.
The analysis shows that the first absolute linear
instability of the steady two-dimensional flow is a
steady three-dimensional bifurcation with wavelength
6.9 step heights at a critical Reynolds number of 748.
Stability spectra and eigenmodes are presented for
representative Reynolds numbers.

INTRODUCTION

The separated flow past a backward-facing step
is important for several reasons. Firstly, separated
flows produced by sudden changes in flow geometry
are important in many engineering applications. This
has been the practical motivation for many studies of
backward-facing step flow over the past 30 years. Sec-
ondly, from a fundamental perspective, there is strong
interest in understanding instability and transition to
turbulence in non-parallel flows. Transition mecha-
nisms in parallel flows such as plane channels and
pipes have received substantial attention, and while
many questions remain, these flows are considerably
better understood than the non-parallel flows that
arise in more complex geometries. The backward-
facing step flow has emerged as a standard example of
a simple yet nontrivial geometry in which to examine
the onset of turbulence. Finally, from a strictly com-
putational perspective, the two-dimensional flow over
a backward-facing step is an established benchmark
in computational fluid dynamics and therefore addi-
tional computational studies of this flow, such as the
stability computations presented here, add important
new information to the current database. Detailed
knowledge of the three-dimensional structure and sta-
bility properties of flow over a backward-facing step
in the transition range should be particularly impor-
tant in defining the appropriate large-scale structure
for large-eddy simulation combined with various tur-
bulence models that may be used to simulate the flow
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at higher Reynolds numbers.

The two-dimensional linear stability of this flow
has been examined extensively and is discussed in
several publications [1-3]. However, additional com-
putational evidence supports the existence of a local
convective instability (again to two-dimensional dis-
turbances) for a sizeable portion of the domain at
Re > 525 [4]. In spite of the numerous investigations
of flow over a backward-facing step available in the lit-
erature, two of the most basic questions for this flow
remain open: in the ideal problem with no sidewalls,
at what Reynolds number does the two-dimensional
laminar flow first become linearly unstable, and what
is the nature of this instability? These are the ques-
tions we wish to address.

FORMULATION

The flow is assumed to be governed by the incom-
pressible Navier-Stokes equations, written in non-
dimensional form as:
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N(u) — %Vp+ nQ, (1)

V-u=0 in (2)
where u(x,1) is the velocity field, p is the density,
p(x,t) is the static pressure and {2 is the computa-
tional domain. IN(u) represents the nonlinear advec-
tion term:

N(u) = —(u-V)u. (3)
If the fluid is assumed to have constant density and
constant dynamic viscosity y, then the idealized flow
depends on only three dimensional parameters: the
kinematic viscosity ¥ it/p, and reference scales
for length and velocity. Here we take as reference
values the step height h and the maximum upstream
centerline velocity Us. The only non-dimensional
combination of these parameters gives the Reynolds
number, Re = Ush/v, and this serves as the control
parameter for the system.
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Figure 1: Flow geometry for the backward-facing
step.

Figure 1 illustrates the computational domain un-
der consideration and defines the geometric parame-
ters for the problem. We take the edge of the step
as the origin of our coordinate system. The compu-
tational domain has an inlet height ah and an outlet
height (1 + a)h. In this study we fix @ = 1, giving
an expansion ratio (outlet to inlet) of 1 + o = 2.
The inflow and outflow lengths L; and L, should
be large enough that the results are independent of
these parameters. At the inlet, L; = h is sufficient
for the range of Reynolds numbers we consider [5, 6].
The required outflow length L, varies with Reynolds
number and must be determined as part of a proper
convergence study. Acceptable values for the range
of Re considered here are 154 < L, < 55h [7]. Fi-
nally we take the system to be infinitely large and
homogeneous in the spanwise direction, i.e. L, = o0.

Boundary conditions are imposed as follows. At
the inflow boundary (z = —L;, 0 < y < ah) we
impose a parabolic profile: u = 4y(ah — y)/(ah)?,
v = w = (. Along the step and all channel walls we
impose no-slip boundary conditions. At the outflow
boundary (z = L,, —h < y < ah) we impose a
standard outflow boundary condition for velocity and
pressure:

dzu(x,t) = (0,0,0), p(x,t)=0.

Pressure is forced to satisfy a Neumann condition con-
sistent with the momentum equation along all other
boundaries [8].

COMPUTATIONAL METHODS

All of the calculations were carried out using a non-
conforming spectral element method. In this method
the domain 2 is represented by a mesh of K ele-
ments. Within each element the geometry and solu-
tion variables are interpolated using a tensor-product
polynomial basis of order p in each direction, giv-
ing N? = (p+ 1)? grid points per element. Figure 2
shows the computational domains used for simulating
the backward-facing step flow over the entire range of
Reynolds number. Each grid uses local refinement to
isolate the singularity induced by the sharp corner,
and to resolve the recirculation zones in the wake of
the step and along the upper wall. The use of local
mesh refinement allows high-resolution of these criti-
cal flow regions while at the same time permitting the
use of a large computational domain. A large domain
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Figure 2: Computational domains for simulating
flow over a backward-facing step. Two subsec-
tions of mesh M; are expanded to show the in-
ternal distribution of quadrature points for poly-
nomial order p = 7.

size is required to isolate the region of interest from
the effects of the outflow boundary.

Our computations consist of two parts. First we
obtain steady two-dimensional solutions from either
time-dependent simulations or Newton methods. Sec-
ond we determine relevant bifurcation points along
the steady branch of solutions via two- and three-
dimensional linear stability analysis. The compu-
tational procedure is the same as that used previ-
ously [9,10]; here we only outline the essential fea-
tures.

For the stability calculations we consider the evo-
lution of a small perturbation u’ to a steady base flow
U. Equations for the evolution of u’ are obtained by
replacing the nonlinear advection term in the Navier—
Stokes equations with the linearization:

Ny(u') = —(u’-V)U - (U - V)u'.

Note that boundary conditions for the perturbation
are the same as those for the base flow U except that
u’ = 0 at the inlet.

Our primary concern here is the three-dimensional
stability of steady two-dimensional flows. Because
the system is homogeneous in the spanwise direction,
we can decompose general perturbations into Fourier
modes with spanwise wavenumbers 3:

(u’:p!)[wv Y, z:t] = ]

-0

o0

(4, p)[z, ] 74 +P= dp.

In the linear approximation modes with different ||
are decoupled. The Fourier components can be com-
puted on a two-dimensional domain with 3 appea.rhig
in the linearized equations as an additional parame-
ter. Our stability calculations therefore produce a
family of eigenvalues o(f3; Re) for a discrete set of
fixed Reynolds numbers.

Note that by construction this approach deter-
mines the absolute, global stability properties of the
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Figure 3: Neutral stability curve for the flow over
a backward-facing step. Everywhere inside the
shaded region there exist modes with positive
growth rates.

flow. The functions @[z, y, z] = a[z, y] exp(iBz) are
the global modes of the system, and the eigenvalues
o = 0, + 10y are the corresponding global frequen-
cies. A global instability is present if there is any
mode with an absolute growth rate o > 0.
Further details of the computational procedure
along with a detailed convergence study for the set
of parameters considered here are presented in [7].

RESULTS

We begin by presenting our findings for the de-
pendence of eigenvalues on Reynolds number and
spanwise wavenumber. Figure 3 shows the neutral-
stability curve for the flow up to Re = 1000. Ev-
erywhere to the right of this curve there is a band of
wavenumbers with ¢, > 0 and the flow is therefore
linearly unstable to three-dimensional perturbations.
The neutral stability curve becomes much more com-
plicated for Re > 1000 because multiple eigenvalue
branches cross the linear stability threshold. How-
ever, this occurs well above the primary instability.
For this reason we have not attempted to resolve the
eigenspectra in this more complicated regime.

Critical values for the flow were determined as fol-
lows. First, points along the neutral curve were ob-
tained by accurately finding zero crossings of eigen-
value branches (as a function of ) for several
Reynolds number between 750 and 1000. Next we
computed a cubic fit to the neutral points near the
tip of the curve. The critical values Re. and 3. were
then evaluated from the cubic fit, giving Re. = 748
and 3. = 0.91 (A, = 6.9 step heights).

Note that the two-dimensional stability of the flow
is determined by the structure of eigenspectra at
B = 0. Our calculations indicate that all such
eigenvalues satisfy o, < 0, and so the flow is two-
dimensionally stable for Re < 1000. Preliminary
results indicate that there may be a two-dimensional
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Figure 4: Three-dimensional structure of the

leading eigenmode. Contours indicate the
strength of the u-component of the perturbation
and vectors indicate the spanwise flow pattern at
each downstream plane.

instability above Re ~ 1350, but the results so far
Further details about the behav-
ior of the two-dimensional eigenspectra can be found
in [7].

Now we turn to a description of the eigenmodes as-
sociated with the three-dimensional instability. The
leading eigenmode at [le = 750 is shown in figure 4.
The flow visualization is constructed by forming the
linear superposition U 4+ eu’ to produce a three-
dimensional vector field. From the visualization we
see that the instability takes the form of a flat roll
that originate in the recirculation zone just down-

are inconclusive.

stream of the step. The size of the mode (wavelength
and downstream extent) scales on the size of the pri-
mary recirculation zone. This length scale is much
larger than either the step height h or the nominal
thickness of shear layer separating from the step.

A more detailed view of the eigenmode structure
of both the leading and secondary modes is shown in
figure 5. Although in general ¢ is complex, the global
frequency of the two leading modes is real (g; = 0)
so they represent steady bifurcations. In this view
we note that the primary instability mode has a large
w-component both near the step and just upstream
of the reattachment point on the lower wall. The sec-
ondary mode is linked with the recirculation zone on
the upper wall but otherwise has the same qualitative
structure, i.e. a flat roll structure that scales with the
size of the recirculation zone.

From the visualization of the eigenmode we can de-
termine that the primary linear instability does not
arise either in the secondary recirculation zone or in
the high-speed region between the primary and sec-
ondary recirculation zones. This rules out a Taylor-
Gortler-type instability of the main flow as the source
of three-dimensionality in experiments.
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Figure 5: Structure of the global modes excited by perturbations to the backward-facing step: (a) leading
mode (vector plot along y = —0.65); (b) secondary mode (vector plot along y = 0.65). The lower portion
of each image shows w-contours of the destabilizing Fourier mode. Note that both eigenmodes are real.

SUMMARY

We have shown that the primary bifurcation of the
steady, two-dimensional flow over a backward-facing
step with a 2:1 expansion is a three-dimensional in-
stability. We have computed the critical Reynolds
number and spanwise wavelength of the instability
and find Re. = 748 and A, = 6.9h. We have fur-
ther determined the band of unstable wavenumbers
for Re up to 1000. This data will be particularly use-
ful in future numerical work as it allows the selection
of appropriate spanwise domain lengths and sets the
framework for detailed transition studies.
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