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ABSTRACT

In this paper, on the ground of previous LDA
measurements and of the consequent three bands
model of a boundary layer, a new physically based
definition of its thickness, and a new mean velocities
distribution law within it, .which can eliminate some
difficulties connected with some classic distribution
laws, are proposed. Both results well fit classic
experimental data.

INTRODUCTION

Turbulent boundary layer is a fluid mechanics topic
very much studied The Authors studied
experimentally for a long while a turbulent boundary
layer generated along the bottom surface of a
channel, with no longitudinal pressure gradient, and
made measurements (particularly careful as every
experimental point refers to more than 300000 data)
of instantaneous velocities using an LDA. Details of
channel and of measuring system are presented in
(Greco, Pulci Doria 1983) (Gualtieri 1995). The
Authors investigated about mean velocities, velocity
fluctuations and power-spectra of turbulence, and
recently about distributions of longitudinal integral
length scales, as well as skewness and kurtosis of
the instantaneous velocities (Pulci Doria 1991)
(Gualtieri 1993) (Gualtieri, Pulci Doria 1997).
These last distributions have been interpreted in
such that the thickness 5 of the boundary layer is not
constant but is really varying inside a certain band
that, referring to Coles boundary layer definition
(1956), is comprised between 0,855 and 1,958.
Because of this phenomenon, the flow can be shared
in three successive bands, whose widths are
proportional to 8. In particular a boundary layer
band  (y<0,858), an intermittence  band
(0,856<y<1,958), an external layer  band
(y>1,958)(Gualtieri, Pulci Doria 1996).
Furthermore, in the first band, distribution laws
relative to boundary layer are present, in the third
band distribution laws relative to external layer are
present, and in the intermittence band the
distribution laws are weighed means between the
boundary layer laws and the external layer laws,
because of the intermittence phenomenon. In fact all
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happens as if, owing to intermittence, the boundary
layer and the external layer laws would continue in
the intermittence band, either from the bottom or
from the top, in a percent of time,

CLASSIC LITERATURE ON BOUNDARY
LAYER MEAN VELOCITIES
DISTRIBUTIONS

Coles, on the ground of Clauser’s ideas (1956),
proposed a mean velocities distribution law that, as
it is well known, is affected by an important failure:
its derivative at the conventional (by Coles) end of
the boundary layer is different from zero

Dean (1976), on the ground of Granville’s ideas
(1976), proposed a new mean velocities distribution
law, in which he could eliminate the failure of Coles
law. His law however, and this fact has not yet been
underlined, is not continuous in its second derivative
always at the end of the boundary layer (fig.1). In
this and subsequent figures, for simplicity, the
classic velocity defect divided by u* will be called
Ud, and the non dimensional co-ordinate y/8 will be
sometimes called Y,

More recently Pulci Doria and Taglialatela (1991),
in an international context (Hancock, Bradshaw
1989) (Hoffmann, Mohammadi 1991)
(Bandyopadhyay 1992) , proposed a new mean
velocities distribution law, for taking into account
the possible presence of turbulence in the external
flow. This law respects the continuity of its
derivative, but is affected too by lack of continuity
in its second derivative at the end of the boundary
layer, that, because of specific reasons, is 1,25 times
thicker than Coles and Dean ones. (fig.2)

In his paper, Coles compared his mean velocities
distribution law for boundary layer with no
longitudinal pressure gradient with experimental
points of Wieghardt: this comparison is reported in
(fig.3). In his plot Coles represents the difference
between the mean velocities values and the
logarithmic law (that is the wake law multiplied by
2IUK) and calls this function “g”. In fig.3 the
Authors transfer also the Dean and Pulci Doria and
Taglialatela mean velocities distribution laws,
always as function “g”. It is possible to observe:

1) The Coles law well fits the experimental points




till y/6 = 1. Afterwards, it is slightly lower than the
experimental points.

2) The Dean law is slightly higher than the
experimental points till y/8 = 1, and afterwards
shows the same behaviour than Coles law.

3) The Pulci Doria and Taglialatela law fits well
experimental points till y/8 = 1, but afterwards
becomes too high.

A NEW MEAN VELOCITIES DISTRIBUTION
LAW

On the basis of previous observations about non
continuity in Coles, Dean and Pulci Doria and
Taglialatela mean velocities distribution laws and
disagreements between these laws and the
experimental data, and having defined a three bands
model, which lets a good representation of
Skewness, Kurtosis and Length Scales distributions,
the Authors will propose a new mean velocities
distribution law, relative to the simplest case of
boundary layer with no longitudinal pressure
gradient and with no turbulence in the external flow.
This law has to satisfy the following requisites:

a) Tt has to be based on the three band model.

b) It has to be continuous everywhere with its first
and second derivatives at least.

c) It has to fit experimental points better than Coles,
Dean, and Pulci Doria and Taglialatela laws.

As it is well-known, in mean velocities distribution
problems, the true local quantity to which it is
necessary to pay attention is not the value of mean
velocity itself, but its derivative with respect to y/&
(that is the mean wvelocities wvertical gradient
distribution, henceforth “gradient™).

Consequently, and according particularly to the
requisite a), it is necessary:

1) To define the “gradient” in a boundary layer flow
defined “hypothetical” because it would continue
beyond the boundary layer band till an infinite
distance from the wall, without meeting any external
flow.

2) To multiply these “gradient” values by the weight
function required by the three bands model which is
worth 1 till y,/8=0,85; varies linearly from y,/8=0,85
to y./8=1,95; and is worth 0 above y,/6=1,95 (so
that the boundary layer law will continue in a
percent also in the intermittence layer!)

3) To integrate this “gradient” in order to obtain the
mean velocities distribution.

It is obvious that, the “gradient”, has to be
continuous with its first derivative at least (requisite
b); and that the final law after integration will have
to well fit the experimental Wieghardt points
(requisite c).

In order to define the “gradient” in the
“hypothetical” boundary layer flow, according with
the previous requisites a) and b), the Authors
followed these subsequent rules:
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o) The law they had to obtain had to be equal to
that of Coles till y/6=0,925

B) The “gradient” had to reach asymptotically a zero
value as y/8 goes to infinity.

¥) The “gradient” had to be always continuous with
its first derivative.

In order to follow these rules the Authors started
from the Coles law (till y/6=0,925) (rule a),
employed a hyperbolic law like A/(y/8)" from
y/8=1,075 (rule B) and lastly chose the A and n
values and the shape [s(y/8)] of the function
between y/6=0,925 and y/6=1,075 in order to follow
the rule y).

The function obtained through these previous points
could stand for the new “gradient” valid in the
“hypothetical” boundary layer flow.

As by the previous rules the new “gradient” had
been defined (point 1), now the Authors could
complete point 2) and 3) so obtaining the mean

velocities distribution respectful of a) and b)
requisites.
Lastly, in order to respect also requisite c), they

compared the mean velocities distribution with
Wieghardt points, and repeated the whole procedure
many times changing A, n, and the shape s(y/3) till
also requisite c) had been achieved. So doing they
obtained the true final distribution law (fig.4), that is
strongly continuous till the second derivative (fig.5).
A direct comparison is presented in (fig.6) among
the Authors new law, the Coles law and the
experimental Wieghardt points. Tt is evident how
this new law well fits the classic experimental points
of Wieghardt, especially in the zone where y/6>1,
where all the previous laws show important
disagreements with them.

A NEW DEFINITION OF THE BOUNDARY
LAYER THICKNESS

On the ground of the three bands model, and also of
the new proposed law, it is possible to redefine the
boundary layer thickness in a more rigorous way.

As it had been shown that the instantaneous
thickness of the boundary layer varies, with respect
to the Coles 8 definition, from 0,858 to 1,958, it
becomes suitable to define a new boundary layer
thickness 6n as the mean between these two values,
namely equal to 1,4 times the Coles & definition.
With respect to this new definition, the intermittence
band lies symmetrically under and above the y/&n=1
point, from y/n = 0,6, till y/dn=1,4.

This new definition is a physically based one.
Moreover, observing the shape of the new proposed
law, it is possible to notice that, at the distance of
1,4 times the Coles & definition (that is at &n
distance), the mean velocity has attained almost the
100% value of U,, value (it is needed only a value
equal to 0,0011u. to attain just the 100% of U,,).



A NEW “TOTAL WAKE LAW”

In both figs.3 and 6 the difference between the mean
velocities values and those characteristic of the
logarithmic law is represented. This difference
represents the wake law multiplied by 2IT/K. It is
possible to call this difference “total wake law”.
Now, taking into account the new boundary layer
thickness definition 8n and the new mean velocities
distribution, it is possible to define also a new “total
wake law”, which must be considered wvalid till
y/dn=1,4. Only at that value of y/6n the
intermittence band is completely exhausted and after
this value the curve follows at all the simple law
U=U,, namely:

total wake law = U,, - (1/K)*In (y/8) - C

This new “total wake law” is reported in the
following table.

y6  [twl |y6 |twl |y6 |twl

.01 .000 71 2732 |1.07 |1.859
.04 .006 75 2678 11.09 |1.8I8
.07 .040 77 2629 |1.11 |1.777
11 116 78 2612 [1.13 1738
.14 231 79 2595 |1.14 |1.698
18 374 .80 2.550 [1.16 |1.659
21 .545 .82 2503 |1.18 |1.621
25 736 .84 2455 |1.20 |1.584
29 .942 .86 2406 |1.21 |1.547
32 1.152 | .88 2.357 1.23 [1.510
36 1.367 |.89 2.309 125 [1.474
.39 1.584 | .91 2.261 1.27 |1.439
43 1.797 .93 2214 129 |[1404
46 |2.005 |.95 2.167 130 |1.369
50 12.200 | .96 2.121 1.32 |1.335
54 12377 |.98 2076 (134 |1.302
57 12530 |1.00 (2031 |1.36 |1.269
.61 2648 11.02 |1.987 |138 |1.236
64 12723 |1.04 [1.944 |[139 |1.204
.68 2749 [1.05 [1.901 1.40 |1.188

CONCLUSIONS

Taking into account the shape of the second
derivative of mean velocities distribution and a
previously defined three bands model in boundary
layer with no pressure gradient, it has been possible
to define a new mean velocities distribution law,
more respectful of the physical behaviour and of the
experimental data. Moreover both distribution law
and three bands model suggest a new physically
based definition of boundary layer thickness.
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