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ABSTRACT

Accurate prediction of transition from laminar to turbulent
flow is not only needed for drag estimation, but is also
important in predicting scale effects when extrapolating wind
tunnel data to full scale. One of the methods commonly used
for estimating the most likely position of this transition is
based on stability theory. Linear stability theory is used to
calculate the spatial evolution of all possible instability
waves, If any wave exceeds some maximum amplification
the ensuing nonlinear behaviour is assumed to cause a rapid
breakdown to turbulence. From a correlation of calculated
amplification factors with a large amount of experimental
data a value of critical amplification has been found to be
roughly ", where n is 9. This so called "e-to-n" approach
has been used for many years and although not precise it is
still one of the best tools available for the purpose of
estimating the location of transition. The process of
calculating all the eigensolutions needed, especially in three-
dimensional boundary layers, can be quite time consuming
and the estimation of the transition turns out to be too
expensive for routine design purposes. Here we demonstrate
an approximate way of calculating eigensolutions that can be
used to speed up the prediction process significantly.
Approximate eigenvalues are obtained from a set of pre-
computed tables covering the required range of pressure
gradients, Reynolds numbers and frequencies.

THEORETICAL BACKGROUND

The stability loop defining amplification contours on a
Reynolds-number~frequency-plane is a remarkably smooth
function of the variables. It seems reasonable, therefore, to
express the functional form of the amplification rate by a
simple expansion of these two variables. Eigenvalues can
then be found by evaluating the function, using previously
calculated coefficients. A scheme based on a simple power
series defining the growth rate in terms of two variables was
first demonstrated for the case of a zero pressure gradient
Blasius flow in 1977 (1). Once the coefficients of the double
series had been determined accurate eigenvalues could be
calculated some 1000 times as fast as by the direct solution
of the Orr-Sommerfeld equation. Convergence acceleration
methods had to be used to reduce the number of terms
needed to provide acceptable accuracy Shanks (2). An
alternative scheme, using Pade approximants (3), avoided
this requirement and has also been successfully used to form
tables of coefficients for a range of pressure gradients,
enabling n-factor calculations to be made very rapidly. The
method has been extended to three-dimensional flows (4) and
is being also applied to compressible boundary layers.

The present scheme uses the same, or a related functional
form, but the coefficients arising in the expressions are
evaluated directly by fitting them to a set of accurate
eigenvalues distributed over the domain of interest. The
earlier approach defined temporal modes. It was more
convenient to use a formulation that gave the spatial
eigensolution directly in terms of the local Reynolds number,
Rs» and frequency parameter @ involving the free-stream
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velocity I/ and the boundary layer displacement thickness
0". After some experimentation the form:-

a = f(w \z5)

was found to be suitable. The non-dimensional frequency
parameter @ is defined as Frequency X 2m o The

functional form,
dimensional series

f, was taken as the ratio of two two-

_ IZAXY
~ IEZB XY’
where X = Xscale X w andY = Yscale x \/I,

summed over any specified region i, j. The coefficients
Aj; and By were found by solving a set of linear equations for
eigenvalues randomly distributed over the Reynolds
number~frequency plane in the regions where approximate
solutions were required. Coefficients were calculated for a
range of Falkner-Skan velocity profiles from stagnation to
separation.

The accuracy with which n-factors can be determined
depends on how well the boundary layer is defined and on
whether non-parallel or curvature terms are included in the
formulation. Here two additional factors that can increase
errors are introduced. One is the use of the Falkner-Skan
family of velocity profiles. This approximation is unlikely to
cause serious problems on laminar flow aerofoils, where the
gradients are weak, but there maybe errors close to
separation. The second approximation arises through the
method of predicting the eigenvalues of the chosen family of
velocity profile shapes by evaluating a function containing
the previously determined coefficients. With care the errors
from this cause can be reduced to a very acceptable level
albeit sometimes with increased computational effort. For
predicting n-factors there is no point in making unnecessarily
accurate estimates of eigenvalues, because errors introduced
in so doing may be far less important than those already
embedded in the transition prediction scheme itself. It is
important to create a sensible balance between all the sources
of potential error so that reasonably useful results can be
obtained with a minimum of computational effort.

CALCULATION OF TABLES

In order to illustrate the method attention is focused on the
zero pressure gradient Blasius boundary layer. Figure 1
shows the spatial stability loop for eigenvalues determined by
the direct solution of the Orr-Sommerfeld equation. The
contours of spatial stability amplification are smooth
functions of the two variables. The coefficients of the Pade
type series needed to fit this function were found for various
arrays sizes and layouts. After some numerical experiments
it was found that a satisfactory form of array was provided by
the ratio of the two functions set out above, with the arrays
truncated to a triangular set of coefficients. For simplicity a
simple rectangular domain was chosen for the fitting process
extending to well below the critical Reynolds number and to
frequencies roughly twice those of the upper branch.
Figure 2 shows the stability loop constructed from the data



set for the 5 X 5 pattern.  Figure 3 shows a contour plot of
the absolute magnitude of the differences between the
approximate evaluation from the 5X 5 array and the Orr-
Sommerfeld calculation. Mostly errors within the fitting
rectangle are less that 10-*, but there are large regions where
the errors are even smaller. Nevertheless, the accuracy was
not thought to be good enough for n-factor estimation. Other
arrays were tried, and generally it was found that larger array
sizes reduced errors. Figure 4 shows the error contours
obtained with the 9 X 9 array, where errors over most of the
fitting domain have been reduced to 1075, Similar results
were found for various pressure gradient parameters spanning
the range from stagnation to separation. For each pressure
gradient a different fitting zone was chosen to cover the most
important domain for that flow. 49 pressure gradients, or
values of H, were selected and the tables of coefficients
evaluated. The process took some hours on a small desktop
machine.

An interpolation scheme was then written, so that
eigenvalues could be determined for intermediate pressure
gradients. A cubic interpolation was used to enable
eigenvalues for any pressure gradient, frequency and
Reynolds number to be found. Generally eigenvalues were
determined to an accuracy better that 1 part in 10° when the
9 X 9 arrays were used.

N-factor CALCULATIONS

The measured pressure distribution from an experiment
carried out on an aerofoil is shown on figure 6, together with
the calculated displacement thickness and shape
parameter H. The velocity profiles provided by the boundary
layer code were then used to make n-factor predictions by
DERA (Defence Research Agency) using a code called
'CoDS'. The results of these calculations are displayed on
figures 7 for a set of frequencies. The value of 'n' reaches 9
at roughly 39% chord. This position would be chosen as the
probable position of the transition to turbulence. Figure 8
shows the results of the Orr-Sommerfeld calculation based on
the Falkner-Skan family of velocity profiles with these values
of H.  There are some differences between these two
predictions, but the transition position estimation is not far
different from the above estimate at 41%. The calculation
has also been repeated using eigenvalues calculated by the
rapid estimator using the 9 X 9 arrays and the full 49 pressure
tables. The results of this calculation, shown on figure 9, are
again quite similar to those on the previous figures. The
transition position is estimated at 40%, which is reasonably
close to that of the 'CoDs' program. The calculation
was repeated using a set of tables for 6 X 6 arrays. In this
case only 9 pressure gradients were used to form the final
data set. Figure 10 shows that these additional
approximations have little effect on the final n-factor
calculations.

SPEED OF EVALUATION

All the computing was carried out on an Acorn Archimedes,
a 32 bit micro-computer running at a modest clock speed of
30 MHz. The speed of floating point calculations is similar
to that of an Intel 486 running at 90 MHz.

In the Omr-Sommerfeld evaluation a shooting integration
scheme was used and the time taken to obtain a root
depended crucially on the initial eigenvalue estimate. An
Orr-Sommerfeld integration using 200 steps takes 55 msecs.
If it assumed that 5 iterations are needed to reach a converged
result then each eigenvalue will take 0-55 secs. In the
example shown on figure 6 there are 16 positions at which
the eigenvalues were evaluated for 19 frequencies, making
304 eigenvalue determinations in all. The fast scheme using
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the full 9 X9 array carried out this particular calculation,
including the interpolations, in 62 msecs. The smaller 6 X 6
array provided the set of eigenvalues in 45. The current
codes provide virtually instantaneous screen displays of
growth factors and hopefully prediction of the transition
position.

DISCUSSION

The proposed method of obtaining n-factors assumes that the
boundary layer profiles are very close to those of the Falkner-
Skan family. This is a good assumption for the region of
accelerated flow up to the pressure minimum, but the match
between the actual velocity profile and that from the
similarity family is generally less good in highly adverse
pressure gradients and is relatively poor at separation. Of
course n-factors determined by any scheme is not that precise
in predicting the transition process and it is therefore quite
unrealistic to demand too high an accuracy for the eigenvalue
prediction in the rapid scheme. The accuracy of predictions
of n-factors depends on the accuracy of the series method, the
interpolation scheme as well as the match to Falkner-Skan
profiles. The comparisons for incompressible flows of
growth curves computed directly for the true boundary are
very close to those obtained by the fast scheme and suggest
that the errors introduced by all these factors do not
invalidate the predictions. So far this type of comparison has
not been carried out on a compressible boundary layer flow,
but the tools have been created to enable that to be done once
proper validation of the code has been made.

The rapid scheme is so fast that it is unnecessary to consider
any further reductions of computing time. In fact there is
little to be gained by using the reduced array size other that in
reducing the time to carry out the calculation of the
coefficients.

The rapid scheme does not need any preliminary estimates of
eigenvalues, making it easy to use in real applications. Also
the extra overhead in calculating the growth for a very large
number of frequencies is low, reducing the need to make any
decisions as to the most dangerous range.

CONCLUSIONS

A scheme has been developed to calculate the coefficients of
an expression that models the eigenvalue relations for any
velocity profile of the Falkner-Skan family. These tables of
coefficients have been used in a scheme to provide n-factors
for a number of test cases. Agreement achieved with the full
calculations were sufficient for transition position estimation.
Comparisons with full Orr-Sommerfeld solutions for the flat
plate case have shown agreement for very low Mach
numbers, but progressive divergence as Mach one is
approached. The differences, whether they be from coding
errors or from the approximation used, may not have too
large an effect on the n-factor calculations. Once the code
has been validated it will be used to compute the necessary
tables of coefficients for a compressible fast solver.
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Fig 7 DERA Calculations using "CODS"
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Fig 8 Falkner-Skan Eigenvalues
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Fig 10 Rapid 6 X 6 arrays with 9 tables



