13th Australasian Fluid Mechanics Conference
Monash University, Melbourne, Australia
13-18 December 1998

MEANDERING PLUME MODELS IN TURBULENT FLOWS

Michael S. BORGAS

CSIRO Atmospheric Research
Station St. Aspendale, Victoria, AUSTRALIA

ABSTRACT

A new interpretation of meandering plumes is proposed
based on Lagrangian statistics of N-particle clusters. The
key element is the Gaussian nature of the cluster ‘shape’
contrasting with the non-Gaussian nature of the ‘size.’
This process is illustrated by the dynamics of random
Lagrangian triangles formed by triads of tracer particles
obtained from direct numerical simulations of turbulence.
The N-particle model leads to simple expressions for the
probability density function of plume concentration in
terms of classic relative dispersion of particle pairs.

INTRODUCTION

Passive scalar transport and mixing is often best
considered from a Lagrangian point of view, at least
when the scalar is released from isolated sources
(Sawford, 1985). For atmospheric pollution, it is often a
plume from a factory chimney or an accidental toxic
release that must be modelled for risk assessment, which
requires probabilities of concentration levels rather than
simple quantities like the mean concentration. Gifford's
meandering plume model (Gifford, 1959) addresses this
problem by flapping a prescribed local concentration
profile according to the prevailing large-scale turbulence.
It captures some aspects of turbulent mixing, but does not
represent in-plume concentration fluctuations. This type
of meandering plume model requires a separation of
scales between large-scale flapping and in-plume
turbulent mixing, which is not always clearly defined.
Here we consider new models for plume mixing based on
multi-particle Lagrangian statistics in turbulence. The
standard results (Sawford, 1985) are for statistics of
single particles and pairs of particles in turbulent flows,
which give the mean and variance of a scalar field at time
t and position x for a source, S(y), defined at time
t=1, , but more generally (overbar indicates an average)
CY(x,0)= JPN (51152:---aENafo;E-J.r--"ﬁsf)x
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where Py is the transition probability density function
(pdf) for N particles to have come initially from
XXy, and to have reached x (the concentration
measurement point) at time ¢. These ideas have been used
widely, and recently Borgas & Sawford (1996) compared
Lagrangian-model predictions for fluctuations (N=1,2)
with wind-tunnel (passive) temperature measurements,

(N

139

demonstrating the utility of the particle models. However,
despite the importance of the mean and the fluctuation, it
would be useful to have predictions for the probability
density function of concentration, P(C) (equivalent to
arbitrarily many of the higher-order moments of the
scalar field at the point x, ¢V for N =1,2,... ).

Meandering Turbulent Plumes

Gifford’s meandering-plume is illustrated in Figure 1.

Figure 1 : Schematic of a meandering plume.

A fixed instantaneous in-plume concentration profile
C(Y), where Y measures distance from the
instantaneous centre-of-mass y., is randomly flapped
about according to the energy-containing scales of the
turbulence. The statistics of the ‘flap’ of Y., written as
P, (y, ), are also assumed known. y. and y. are simply
two other independent ‘flap’ realisations. The concept
relies on separation of turbulent scales: large eddies
flapping the plume and small eddies locally mixing the
plume. It therefore has restricted foundations and relies
on assumed inputs which are not straightforward. For
example, the original meandering plume (Gifford, 1939)
imposed a Gaussian in-plume (instantaneous) profile and
a Gaussian distribution for the random centre-of-mass
displacements. Model variants have included top-hat
distributions for C(¥), to better account for plume
structure, and even prescribed distributions for
fluctuating C(¥), but only ever with an empirical
justification. Here we avoid much arbitrariness and are
able to deal with a continuous spectrum of turbulent
scales without partitioning the plume dynamics into
meandering motions and in-plume scales. By including
in a single framework the energy containing bulk
displacements and the ubiquitous cascading fine-scale
motions, say parameterised by turbulent energy
dissipation rate, £ , which controls the rate of small-scale
mixing, better founded modelling is possible.




MULTI-PARTICLE LAGRANGIAN STATISTICS

The specific new results here are for triads of particles,
evolving as Lagrangian variables, which explicitly
determine the skewness of the scalar field. The essential
physics is simply captured by considering the joint
behaviour of three inter-particle spacings, r,, r, and r,.
Taken individually, each spacing is just a two-particle
separation statistic, for example, (r)=(r,)=(r)=(r)
(the average separation). However, taken together the
spacings define a random triangle, whose Lagrangian size
and shape characterise the three-particle cluster.

Random Lagrangian Triangles

Figure 2 shows a triangle where the three vertices are
interpreted as separate Lagrangian particles advected by a
turbulent flow. The random triangle shape reflects the
role of turbulent flow structures encountered in flight.
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Figure 2 : Random triangle notation. Initial vertices are
coincident, each then has equivalent statistics.

The mean-square behaviour of any of the sides is just

2
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(the relative dispersion) while for pairs of sides,
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The geometric identity (2) forces the correlation
coefficient for any two sides of the triangle to be exactly
minus one half. This greatly facilitates modelling. For
example, assuming Gaussian triangle statistics leads to
the probability density for sides r, , r» and angle 6:
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A specific prediction is that the mean area of triangles in
flight can be expressed as (A)=1/2(rr, cos6 )=4/3/602.
This and other properties of triangles will be tested using
direct turbulence simulation data of Yeung (1994). For
this purpose we also choose a second simple geometric
entity which is the probability density for the maximum
angle for the triangle (measured in radians):
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where the two-angle (8+ ¥y + ¢ =x ) pdf p(8,y) is
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Numerical Simulations of Turbulence

We use some results from direct numerical simulations of
isotropic turbulence (Yeung, 1994), there analysed to
give classic Lagrangian pair statistics. Lagrangian
particle trajectories have been recently re-analysed
(Yeung, 1997) to give Lagrangian triangle statistics. The
results are for forced isotropic turbulence at Taylor-scale
Reynolds number Re; =140 ., Here we wish to emphasise
behaviour relevant for the inertial-range scales, and
choose three initial separations for equilateral triangles
n=r=rn =16n,64n,1287

where 77 is Kolmogorov's microscale length; the largest
separation is comparable with an integral length scale of
the turbulence. Results are shown in figures 3 for the
time development of the area to dispersion ratio, showing
evolution from the imposed equilateral initial condition
((A)=J3/4a,1 ), to the Gaussian limit. The straining action
of the turbulence shears the triangles, drawing them out
into longer more slender objects, causing the area to fall
relative to the dispersion, but an equilibrium ratio is soon
reached. In figure 4 maximum angle statistics are shown
(in degrees) at a particular time (for inertial-range
separations at least for the smallest initial triangle). There
is good collapse onto the analytic Gaussian results.

These results suggest that relatively simple processes are
at work: the main action of relative-dispersion stretching
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Figure 3 : Random triangles: Area/Dispersion ratios as
functions of time.
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Figure 4 : Random triangles: maximum-angle statistics at
a fixed time,



(increasing pair separation), and a random ‘folding” of
the triangle (shape distortion). The stretching is described
by two-particle relative dispersion (the statistics of r),
which is comparatively well known. Meanwhile the
triangle shape fluctuates in time between (nearly)
isosceles, through equilateral, to isosceles again, but
generally with a different smallest side in successive
cycles. Equivalently, the angles between the sides, cycle
randomly between 0° and 180° . The triangle shapes are
almost purely random with approximately ‘Gaussian’
statistics (figures 3 & 4). This means that the shape of the
triangle decouples from the size of the triangle, and,
whereas the size is determined by the dynamics of
turbulence (essentially the energy dissipation rate), the
shape is determined simply by topological factors. For
example, simple formulas for probability distributions of
triangle angles and side-ratios can be given which are
universal with no physical parameters (initial transients
can be reduced by using initial Gaussian random triangles
rather than specific equilateral triangles).

CONCENTRATION PROBABILITY DENSITIES

The simplicity of the three particle results suggests
immediate generalisations for the N-particle ‘cluster’
problem, which has also been of long-standing interest.
Here we consider approximations for the N-particle
statistics directly based on Gaussian statistics, Py =Gy,
at least for the topological ‘shape’ of the cluster. The
expressions for the joint probability density for purely
Gaussian clusters can be obtained exactly as a function of
the one- and two-particle dispersion, ¢? and 02 , butit
is not listed here because of the lack of space.

Example: Line Source ‘Plume’ Results

For a definite example, consider an instantaneous line
source (which approximates a point-source continuous
plume in a mean wind). The N-th moment of absolute
concentration along the centreline is

CN=(1-p)"N(1+(N-Dp)'CV , (4

where the mean concentration isC =(27¢2)™" and both
the one-particle dispersion, g2 ,and the two-particle
displacement correlation coefficient, p=p,, are
functions of time which must be provided (see below).

From (4) we can exactly infer the scalar probability
density function, but simply by comparison we
remarkably recover Gifford’s (1959) meandering plume
result exactly. It is important to realise that the basis for
this derivation is entirely different and does not explicitly
rely on partitioning into separate meandering and plume-
mixing dynamics. Other simple source geometries can be
examined, but we only consider the plume result here.
For the continuous point source in a mean wind the pdf
for scaled concentration ¢ , along the centreline, is

P@)=po?", 0<8<1, ¢=1/p-1, d=(1-p)C.
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Two aspects are of note: first, the finite range of
concentrations, and second, the collapse of the pdf far
downstream when p~0 ie. @~ The latter means
that the fluctuations of concentration vanish in the plume
so that the instantaneous concentration is the same as the
mean. This is not usually observed. The finite range of
possible concentrations is not critical near the source
with the maximum concentration unbounded like
(1-p)'as p~1. Because we deal with infinite-peak
initial sources we expect some large concentrations to
persist, however the strong mixing caused by Gaussian
statistics, represented in particular by too few small-
separation displacements, causes rapid small-scale
mixing grossly diluting all parcels of the plume. Clearly,
non-Gaussian relative dispersion is important, both to
generate plumes with realistic internal fluctuations and to
model realistic peak concentrations. Incorporating such
effects is particularly simple in our framework and is
done by taking a ‘sum’ of Gaussian N-particle pdfs
(Gy ), weighted so that the relative dispersion pdf is
exactly prescribed. Then at least the one-particle and two-
particle information is correct within this framework.

Integral Transform for Non-Gaussian Effects

Suppose that Py =fw(p)GNdp for some w20, such
that for the separation pdf g(r) , we have

1 2
(») r
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because of the linearity of (1) we also directly have

P(C) = [ w(p)P(C; p)p = ,_we)p-pycidp,

where p . =0 for C<1 and p, =1-C? for C21.
Note that this pdf has no fixed maximum concentration
unless w(p) vanishes for p ~1, i.e. there is some
weight for dispersion that remains highly correlated with
patches of fluid with weak local dilution. In order to
close the model we only require relative dispersion
statistics (we are assuming that one-particle statistics are
Gaussian and that the one-particle dispersion is known).

INERTIAL RANGE RESULTS

The key property is the separation pdf, g(r) (obtained
from P,(x,,x,)) for which a useful parameterisation is

0 = =4 Cor?E 3 4 1y 1 (g
where the parameters are known by definition,
A, = lg'r’ /12 = o-r' y: y(i,o’r), /T. = A(Q'R,-).

This form stresses the inertial subrange (Thomson, 1996)
where (with velocity fluctuation g, ), as an example,

ol =r ~ayet’ <«<I? =02T? @)
is the law for the growth of separation between pairs of
particles. The Richardson constant og; is widely thought
to be quite small (og; ~0.1 Elliot & Madja, 1996). The
inertial range is important because it represents universal

characteristics of turbulent flows and so has wider
generic applicability. The dispersion inertial range is




characterised by short-time mixing, with the one-particle
dispersion approximated by o ? ~ 0 2¢2 << [2, but can last
for significant periods of time (up to 15 minutes) in
typical turbulence in the convective boundary layer of the
atmosphere, at least for plumes far enough away from the
surface layer. Later we relax small-time restrictions.

Form (6) ensures Corrsin-Obukhov similarity for scalar
fields (Monin & Yaglom, 1975) and is intrinsically non-
Gaussian. In principle, (6) can be obtained from two-
particle Lagrangian stochastic modelling (Borgas &
Sawford, 1996; Franzese & Borgas, 1998), but no model
has yet been devised to properly include inertial-range
effects, i.e. with reasonable values of C, ~3.2. The
correlation coefficient for two-particle displacements,

p,=1-0?[60} =1-ay &f60? ~1 (1<<T),
becomes a surrogate for time in our work. We use (6) in

(5) (inverted) to test the role of non-Gaussian effects. The
centreline concentration pdf is shown in figure 5 for the
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Figure 5 : Concentration probability density function
near the source: dashed lines are Gifford's results.
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Figure 6 : Concentration probability density function far
downstream. A peak develops at the mean concentration.

three times corresponding to p, =0.99,0.97,0.95, ie.
near source when pair motions are highly correlated (but
for atmospheric flows well beyond any viscous zone).
Gifford’s results are shown as dashed curves. It is clear
that the quantitative differences grow slowly with time,
with the later times considered here perhaps beyond
inertial-range scaling times. Qualitatively there is almost
no difference. To examine more dramatic behaviour we
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now consider much further downstream when p,is
smaller (0.2, 0.3 0.4) as shown in figure 6. These results
still use (6), but with effective modifications of the
Corrsin-Obukhov  r?/3-law coefficient to the form
3/8C,rt3g 13~ , which accounts for the dominant single-
particle diffusion-like dispersion far downstream in
contrast to (7). These results show that for this model,
while a strong peak may develop near the mean
concentration, more complex bimodal behaviour is
possible with a peak at zero concentration (intermittency)
and a long tail towards infinite concentrations.

CONCLUSION

A new interpretation of a passive scalar plume in
turbulent flow is given, updating Gifford's (1959)
original meandering plume. A multi-particle Lagrangian
framework exploits near Gaussian-like behaviour for the
shape of multi-particle clusters, tested here for new three-
particle results. The size of a multi-particle cluster is
essentially traditional relative dispersion, which is much
studied. Scalar probability densities along the centreline
of a point source plume are determined for simple
parameterised (but non-Gaussian) relative dispersion, but
the method has scope for wider applications and
reinforces the need to study relative dispersion in detail.
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