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ABSTRACT

We present a combined experimental and theoreti-
cal investigation of the mixing produced by a turbu-
lent fountain when dense fluid is injected from below
into a confined stratified fluid. The experiments show
that the injected fluid rises to a maximum height be-
fore the flow reverses direction, and then intrudes ei-
ther along the base of the tank or at an intermediate
height in the environment. We determine the initial
and steady-state heights of the fountain, the height of
intermediate intrusion and the critical condition for
spreading to occur along the base.

With the continued injection of fluid, both the foun-
tain and the environment are observed to evolve with
time. We determine expressions for the increase in
the height of the fountain, and for the motion of the
ascending and descending ‘fronts’ that mark the ver-
tical extent of the spreading layer of mixed fluid.

INTRODUCTION

Turbulent fountains and plumes arise in a variety
of environments, including the interiors of buildings,
large magma chambers in the Earth’s crust, and the
Earth’s oceans and atmosphere. In all of these exam-
ples, both the flow and environment evolve with time
as the presence of confining boundaries results in the
accumulation of injected fluid.

The continuous flow of a plume into a confined region
containing an initially homogeneous fluid was first
analysed by Baines and Turner (1969). They deter-
mined the changes to the environmental density pro-
file resulting from the continuous addition of buoyant
fluid from both point and line sources. This problem
subsequently became known as a ‘plume filling box’
model. Similar filling box models have since been ap-
plied to axisymmetric plumes in an initially stratified
fluid (Cardoso and Woods, 1993) and to fountains in
initially homogeneous surroundings (Baines, Turner
and Campbell, 1990).

In this paper, we summarize our investigations of ax-
isymmetric turbulent fountains in a stratified fluid
(Bloomfield and Kerr, 1998a,b). We first examine
the initial flow of the fountain, and quantify how the
strength of the stratification determines whether the
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falling fluid spreads along the base of the tank, or
whether it intrudes at an intermediate height in the
environment. We then develop a ‘stratified filling box’
model which quantifies the subsequent evolution of
the fountain and the environment when either basal
or intermediate spreading occurs.

EXPERIMENTAL METHOD

The experiments were carried out in an acrylic tank
which was 38 cm X 38 cm in internal cross section
and 80 cm deep. The ambient linear density gradient
was established with NaCl solutions using the double
bucket method, and was measured to = 1%.

The source fluid was placed in a 20 I bucket which was
raised 1.5 m higher than the main tank. The flow rate
resulting from this gravitational head, which was kept
constant throughout an experiment, was measured
with a flow meter (to 4 4%). The source fluid was
injected upwards from the base of the tank through
a tube with an 8.8 mm inner diameter. Two sets of
cross hairs of 0.5 mm diameter were positioned 3 mm
and a further 44 mm from the tube outlet to ensure
that the flow was turbulent from the source. Using
a method outlined by Baines et al., (1990), measure-
ments of the position of the descending front formed
by a weakly buoyant jet indicated that the position
of the virtual point source was a distance z, = 1.0 +
0.2 cm below the base of the tank, and the effective
source radius was 7, = 4.16 £ 0.23 mm.

The flows were observed using the shadowgraph
method, and dye was introduced into the input fluid
to mark the extent of the spreading layer. Recording
the flows on video enabled the mean fountain height
to be measured to within 0.5 cm.

QUALITATIVE OBSERVATIONS

In our experiments, the dense injected fluid entrains
environmental fluid and rises until gravity brings it to
rest at an initial height. This height is then reduced to
a lower, final value as the flow reverses direction and
the downflow interacts with the continued upflow.
In a weakly stratified environment with a sufficiently
large buoyancy flux at the source, the subsequent be-
haviour is qualitatively similar to that observed in a



homogeneous environment (Baines et al., 1990). The
downflow spreads along the base until it reaches the
walls, and an ascending front is formed that rises
as ambient fluid from above it is entrained into the
downflow. At the same time, the presence of the
dense layer reduces the density difference between the
source fluid and its immediate environment, and thus
causes the fountain height to rise. The front rises
faster than the fountain height, so that, eventually,
it overtakes the top of the fountain. After this point,
the fountain interacts only with the stratified layer,
and the rise of the front is controlled only by the rate
at which source fluid is added.

In a strongly stratified environment with a sufficiently
small buoyancy flux at the source, the downflow
spreads above the base of the tank (figure 1). As a
result, an additional descending front at the bottom
of the spreading layer moves towards the base of the
tank as fluid from below it is entrained into the upflow
of the fountain. The formation of a second front in a
stratified fluid is analogous to the ‘plume filling box’
models in which one front is observed in a homoge-
neous environment (Baines and Turner, 1969) while
two form in a stratified fluid (Cardoso and Woods,
1993).

Figure 1: Photographs of an axisymmetric fountain
where the density of the input fluid is equal to that at
the base of the stratified environment. The flow rises

like a jet and then falls before intruding into the en-
vironment at an intermediate height (upper photo).
With the continued input of fluid, ascending and de-
scending fronts are created in the environment (lower
photo).

INITIAL, FINAL AND SPREADING HEIGHTS
During the first stages of the flow in a stratified fluid,
dimensional analysis indicates that the initial, final
and spreading heights of the fountain are given by

(1)

where the dimensionless parameter, o, is defined by
o= MZN?/F2, p; M, = Q%/(nr?) is the momen-

z = flo)M3*F;13,
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Figure 2: Dimensionless initial fountain height (H),
final fountain height (A) and spreading height () as
a function of ¢. Equations (5) and (6) are also shown.

tum flux at the source, p; F, = p; A,Q, is the buoy-
ancy flux at the source and N? = —(g9/p0)(dp/dz)
is the square of the buoyancy frequency. In these ex-
pressions, @, is the volume flux at the source, A, =
9(pi —po)/Po, g is the gravitational acceleration, z is
the height above the source and p is the ambient fluid
density, with p, the density at the base of the tank
and p; the density of the input fluid. Our experimen-
tal determination of the functions f(o) are given in
figure 2.

In the limits of small and large o, the appropriate
f(¢) for the initial, final and spreading heights, re-
spectively, is given by:

2.65 o <0.1
file) = { 3.2507 1% & > 40, 2)
1.85 o <0.1
file) = { 3.000-1% o > 40, (3)
and
0 o<5
o) ={ st o5t @

For all values of o, the simple functions

fi(o) = (2.(:‘»5_‘1 + 3-25'"40')_1/4 5)

and -
fr(o) = (1.857* +3.07%) 7"/

are a good fit to the experimental results.

(6)

MODEL OF THE FRONTS AND FOUNTAIN
Descending front
The motion of the descending front is found by writ-
ing the equation for the conservation of volume flux
in the region below the front. Hence, if the cross-
sectional area of the tank, A, is much greater than
that of the fountain,

dz,g

A— =

@ - @

(7)



where 2z4(t) is the height of the front above the vir-
tual point source and Q. is the volume flux of fluid
entrained into the fountain from below z4. Since the
upflow in the fountain is almost identical to that in a
jet, the entrained volume flux between z, and z4 is

Zd — Z
Qe = zaQo—va
re

(8)

where o = 0.076 & 0.004 is the jet entrainment coef-
ficient. To simplify this and subsequent expressions,
we introduce the dimensionless heights Z and times %
defined by

z Qot

7= — df{= 4
= e s Ar,

(9)

With the use of (8) and (9), (7) is integrated to give a
solution for the height of the descending front above
the base of the tank:

~het, (10)
This exponential decrease in the height of the de-
scending front contrasts with the algebraic decrease
in the height of the descending fronts formed by an

(2a — %) = (3. — Zy)e

axisymmetric plume in either a homogeneous (Baines
and Turner, 1969) or a stratified fluid (Cardoso and
Woods, 1993).

Ascending front

The motion of the ascending front, z,(t), is deter-
mined by writing the expression for the conservation
of volume flux at the level of the front. Thus

Addi: =Qo+ Qe (11)
where @, is the volume flux of ambient fluid entrained
into the downflow from above the front. Baines et al.
(1990) found that, in a homogeneous fluid, the en-
trained volume flux per unit height into the downflow
of the fountain is constant and is given by

dQ. _ @

dz Te '

(12)

where B was found experimentally to be B & 0.25.
Baines et al. (1990) also explained that the observa-
tion of constant entrainment per unit height can be
understood by viewing the downflow as a line plume
which encircles the upflow. In a linearly stratified en-
vironment, the behaviour of a plume is little different
to that in a uniform fluid until close to the spread-
ing height (Cardoso and Woods, 1993). As a result,
(12) also accurately predicts the entrainment into the
downflow of a fountain in a stratified fluid, and the
total volume flux entrained between Z, and Zj is

_BQ,

Te

Qe

(13)

(z_f — z‘,).
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Using (9), and introducing (13) into (11), leads to
dZ,
e
After the ascending front has reached the top of the
fountain at a time t*, the position of the front in-

1+ B(Zf — Z,). (14)

creases at the same rate as which the free surface
rises due to the addition of fluid to the tank, so that
dia/df = 1. To integrate (14) for times t < t*,
we need an expression for the change in the fountain
height with time.

Fountain height

In developing an expression for the fountain height,
we must consider both that the environment evolves
with time from being stratified to being homogeneous,
and that the addition of dense source fluid increases
the average ambient density with time. We therefore
derive two expressions for the fountain height: 2y, (i),
which gives the fountain height in a stratified environ-
ment with decreasing stratification, and 2 (t), which
gives the fountain height in a homogeneous fluid of in-
creasing density.

To quantify zf,, the average ambient density gradient
over the height of the fountain is approximated by

d_p(t) = m, (15)
dz Zfs — 2y

where p;,(t) is the ambient density at the level of
the top of the fountain, which is at a height zy —
z, above the base of the tank. At small times, a
good estimate for p;, is obtained by assuming that all
ambient density levels above the ascending front rise
at the same rate as the free surface. The position of a
thin layer which is initially at a height z, is therefore
given by 2(t) = 2o+ Qot/A. When this layer reaches

Zfsy Pzy = Po + %E‘a(zn - zv); giving

(275 — 20 — Qot/A),

o

(16)

dp
Pz = po + '&"z'

where %‘3
z

(15) and (16), we obtain an expression for N2(%):

Zfs — 2y — Qot/A, (17)

Zfs — 2y
where N, is the initial buoyancy frequency. Introduc-
ing (17) into the definition of o, and combining (1),
(6) and (9), leads to

N =i/t
1.85% " 3.00 zj, - Z, '
(18)

where 0, = M2NZ/F2. Rearranging this expression
gives the result that

is the initial density gradient. Combining
(]

N*(t) = Ng

Zfs _
M3ARS?

. 3.0, g N
1.85~%+ 3.0~%c, Zss — Z, ’
(19)

Zpe
Z5(0)




At small times when £ < Zfs, we can replace Zf, by
Z£,(0) on the right hand side of (19), so that

3.07 %, By -
={
1.85-443.0-%, 4 ' (20)

where Z., = Ef,(O)/(ff,(O) — Zy).

An expression for 2y, is obtained by assuming that
the ambient fluid below this height is homogeneocusly
mixed, and then using (1) combined with (3) to find
the height to which the fountain would rise in a fluid
with this density. If p, is the average environmental
density at £ = 0, and the fountain reaches a height
th(O) in this homogeneous fluid, then

E_f., =S 5;;(0) +

5 dp| (2m(0) —2,)
Po = Po + T 9

o

. (21)
The initial buoyant acceleration of the source fluid is

_ N2
Ko 9(pi — Po) _ Do+ 2 (2m(0) — 2,)

O == s == N2
Po 1= 75 (2m(0) — 2)

. (22)

Using (1) and (3), we obtain an equation which can
be solved numerically for th([)):

1/2 Nire = 5 12
_ . 1.85M, 1-=2=(2m(0) — 2,)
Zm(0) = a3 \ A o Nire s e
o e 55 6 5= (th((]) - z,,)

(23)
(1990) have
shown both experimentally and theoretically that the
fountain height rises at close to half the rate at which
the free surface rises due to the inflow. If the same
theoretical arguments are applied to estimate Zg, the
equivalent result in terms of dimensionless parameters
is

In a homogeneous fluid, Baines et al.

Zm = Zp(0) + %z,.,,t", (24)
where Z.p, = ifh(U)/(th(U) — %).

To quantify the fountain height at all times, we com-
bine (20) and (24) into a single expression for the
fountain height which characterizes the transition
from Zz; at small times to Zz, as i — *. A suit-
able expression for Z; (f) is therefore

4@ =1 -wd)zp +wd)im,  (25)
where the weighting function 'w(f) is chosen to be

5&._2&

w =

(26)

2_,:*-2,,'

Experimental results

The position of the fountain height and the fronts
were measured in a series of experiments performed
for a range of values of o. The data from one of these
experiments is shown in figure 3 along with the result
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Figure 3: Experimental measurements of the foun-
tain height (x) and the fronts (M) along with the
theoretical predictions of our model. In this experi-
ment, o = 14 and f,(14) = 0.4 (see figure 2).

of integrating (14) for the ascending front, the pre-
dicted position of the fountain height and the expres-
sion for the descending front (10). The good agree-
ment between theory and experiment for the fountain
height and ascending front indicates that the assump-
tions made, and the simple weighting function used,
describe the actual fountain behaviour well. The ex-
perimental results indicate that the descending front
falls slightly faster than predicted by (10). This faster
descent is almost certainly due to the additional en-
trainment into the overshooting fluid below the front,
which is not included in our model.
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