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ABSTRACT

Rough pipe flow is modelled by smooth pipe flow with
an artificially large near-wall viscosity chosen to simulate
the effect of roughness elements on near-wall velocity
profile.  Traditional explanations for behaviour
differences for different roughness types are shown to be
incorrect. The Colebrook-White friction equation for
naturally rough pipes, and the friction equation for
hydraulically smooth conditions, are derived. Predicted
velocity profiles for these conditions, including those for
the near-wall region, agree with published experimental
data.

INTRODUCTION

Classical pipe flow theory has two distinct strands: one
for smooth pipes and one for rough pipes. Both are based
on Nikuradse’s (1932, 1933) experimental results.

The velocity profile of Squire (1948),

u' =y" fory'<7.87
=5.66{1+log(y"-5.41)} for y">7.87,

(1a)
(1b)

is chosen as a basis of the present analysis instead of
earlier classical forms as it is more compatible with
experimental near-wall velocity data. It is in effect based
on earlier laminar sublayer concepts together with an
eddy viscosity of the form

y, =0.407u(y"-7.87) for u™>7.87 (2)

and retention of molecular viscosity in the turbulent core.

Averaging the asymptote of the velocity profile
u” =5.66(1+log y*) (1b”)

(the earlier classical form of turbulent core profile) over

the flow section results in the standard Fanning friction
factor expression

1f =4 log(ReN)-0.4. 3)

For completely rough tubes, Nikuradse’s (1933) classic
velocity profiles for sand roughness of height ¢, are
described in the “fully rough” region by

u" =5.66 log(y/es)+8.5. 4

By averaging this over the flow section,
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1Af =-0.4 -4 log(0.214 &/D). (5)

This describes Nikuradse’s “completely rough” friction
factor data. At lower flows, his rough wall friction factor
data cover “hydraulically smooth” data compatible with
the smooth tube equation and “partially rough” data with
friction factors between the completely rough and smooth
equations.

White (Colebrook 1939) synthesised the completely
rough and smooth wall friction factor equations to
produce

INf =-0.4 -41og{0.214 &/D +(ReVf)'},  (6)
where g, is now the equivalent sand roughness. Although
this agrees with Nikuradse’s completely rough data, it
does not agree with his partially rough pipe data nor his
hydraulically smooth rough pipe data. Nevertheless, more
importantly, it does agree with pressure loss data from
commercially produced pipes, even in the partially rough
regime, and also reverts to the correct form for zero
roughness. These outcomes are sufficient to justify
White’s non-mechanistic synthesis.

The present analysis does not require separate treatments
of smooth pipe flow (dependent only on viscosity) and
completely rough pipe flow (dependent only on
roughness parameters). Moreover, the analysis also
covers “partially rough” flows dependent on both relative
roughness and Reynolds numbers. These results are
achieved by noting that roughness elements of height &
impede the flow in a way that can be simulated by a
smooth wall flow with effective near-wall “roughness
viscosity” p. chosen to provide the correct local velocity
at the outer edge of the roughness layer. The analysis
follows classical concepts, with the eddy viscosity form
of Squire being chosen over others since, at least for
smooth pipes, the Squire model predicts more accurate
near-wall velocity profiles.

ANALYSIS

From the definition of viscosity and the standard means
of non-dimensionalising parameters,

du™/dy"=p.e/u (7

where, in view of the model outlined above,
Heft =Hes Y<E; (82)
=p, fromy'=¢"tou'=u,", and (8b)



=pp(y™-ys )y U (8¢)
In the above, equation (8¢c) is the form proposed by
Squire; u,” is a transition-to-turbulence criterion having a
value 7.87 for smooth pipes; and y;"is an apparent
reference position for the onset of turbulence. For smooth
pipes, choosing it as the location where the critical
velocity for turbulence onset occurs gives it the same
value 7.87

Integrating equation (7) provides the velocity profile

u'=(u/pp)y’, y'<e" (92)
u'=y +H(ip—1)e" from y'=¢" to u=u," (9b)

(ie, equation (9b) covers the range

E+<y+< u0+ +$+(I-"1/P'B)EYO+ )s and
u=(uy’ 'k )+ In(y -yt Hh) —A (9]

from y>y,"
where

A= In{ 1+x(y,"-ys ) } (10a)
=7 In{ 1+ (up -y ") +k T (1-p/ig) } (10b)

is the roughness function.

Averaging the asymptote of equation (9) over the flow
section leads to the friction factor expression.

1/Nf=A+B log C. (an
where
A=u, 7 Ink k! {1.5+ In (2V2)}=-0.4 (12)
B=(¥2x log €)"'=-4 (13)
C={1+k(uy 5" ) +k €°(1-p/p5) H(Re) (14a)
={1+x(yo"-ys" )} (ReVh). (14b)

The numerical values for A and B are based on values for
x and u," as 0.407 and 7.87 respectively. These are the
values from which the smooth pipe version of Squire’s
model provides the smooth pipe equations (1) and (3) for
velocity profile and friction factor. These values are
necessary to ensure that the analysis yields the correct
smooth tube equations for zero roughness.

The correct high & limit, equations (4) and (5), can be
ensured by choosing

€ (1-p/p)=0.714 g, . (15)
The remaining unknown in the analysis is the effective
origin for turbulence y;" of Squire’s turbulence model,
equation (8c). Different choices for this quantity permit
the present model to simulate the different types of

hydraulic behaviour which occur for different roughness
types. These are discussed below.

APPLICATION
Pipes of Natural Roughness (Commercial Pipes)

An automatic choice for y;~ is 7.87, the value for which
Squire’s model leads to the smooth tube friction factor
equation, equation (3). It is readily seen that this value
converts equation (11) to the Colebrook-White equation.

656

Moreover, the analysis provides a means of predicting the
velocity profile.

Robertson et al (1968) measured friction factors and
velocity profiles for a naturally rough tube. Their friction
data agrees with the Colebrook-White equation with an
equivalent sand roughness value £/D=0.0015 (Fig 1).

Robertson et al’s velocity data are compared with the
present predictions in Figs 2 and 3. The “roughness
sublayer” predictions are included for schematic purposes
only.
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Figure 1 : Comparison of Robertson et al’s friction factor
data with the Colebrook-White equation for £/D=0.0015.
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Figure 2 : Comparison of Robertson et al’s (1968)
velocity data and the present predictions
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Figure 3 : Comparison of Robertson et al’s (1968)

shifted velocity data for various Reynolds numbers
(shown) and the present predictions.



Prediction of the roughness sublayer velocity profile
requires an additional assumption. The predictions in fig.
2 are for the assumption g=~¢. The data of fig 3 only
include data in the range beyond the predicted laminar
sublayer since only these velocity data when shifted by A
are predicted to fall on the Squire curve. It can be seen
from figs. 2 and 3 that predictions are close to the data,
including those data in the predicted laminar sublayer and
also those data below y"~70 normally regarded as being
in the transition-to-turbulence region.

Hydraulically Smooth Rough Pipes ;

An alternative choice for ys* to that above (ie y; =7.87) is
the location where, in the Squire model, turbulence starts.
The Squire model is here interpreted as having turbulence
onset at a critical u* value u,'(=7.87) rather than at a
critical y* value. In this case, y5 = u, +€(1-p/p,) is the
location of turbulence onset, and the predicted turbulent
core velocity profile (ie for u">7.87) becomes

ut =5.66{1+log(y"-5.41-0.714 &,)}. (16)

This is simply a shifted version of Squire’s version of
the “universal” profile. Although his version agrees with
data better than earlier versions of the “universal” profile,
it still has discrepancies in the so-called “buffer” region.
The analysis suggests that shifted velocity profiles for
hydraulically smooth rough pipe flow will agree with
more accurate versions of the “universal” profile.

The asymptote of equation (16) is that for smooth tubes,
so, as expected, equation (11) reverts to the normal
smooth tube friction equation, equation (3). The rough
walls are thus “hydraulically smooth™ for such flows.

Figure 4 compares Nikuradse’s hydraulically smooth
rough pipe velocity data, shifted by d* values chosen to
optimise agreement with theory, with Squire’s equation
and Beattie’s (1992) version of the “universal” profile.
The data include Nikuradse’s “y=0" data, neglected by
him, indicating a zero error in his traversing mechanism.
In line with the above expectations, the data are close to
Squire’s equation and are in excellent agreement with
Beattie’s more accurate version of the “universal” profile.
(Similarly, Squire’s equation appears to slightly
overpredict the “buffer” region data of the rough wall
velocity data as presented in Figure 3.)
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Figure 4 : Comparison of Nikuradse’s (1933) shifted
hydraulically smooth rough pipe velocity data and the
present predictions.

CONCLUDING DISCUSSION
Four observations may be straightforwardly made.

Firstly, a unifying approach to smooth and rough wall
flows has been achieved by extending smooth tube
concepts to rough pipes. Previously, rough and smooth
walls have been presented as having separate, unrelated
boundary conditions for the turbulent core.

Secondly, the model provides a simple derivation of the
Colebrook-White equation. This equation has not
previously had a theoretical basis.

Thirdly, the present model is incompatible with the
current widely held view that hydraulic differences for
different roughness types arise partly as a result of
different extents to which roughness elements extend into
the turbulent core. Instead, for the traditional cases
examined here, the laminar sublayer is “pushed” to larger
y" values with increasing €,”, and roughness elements
always remain in the laminar sublayer. The dependence
on Reynolds number reduces with increasing Reynolds
number not because roughness elements extend into the
turbulent core, as is normally considered, but because, as
demonstrated in Figure 2, the “roughness” sublayer
becomes an increasingly dominant component of the total
sublayer.

The fourth observation is that the theoretical derivation of
velocity profiles has extended closer to the wall than
previous similar rough wall analyses. Moreover, as
demonstrated, available published experimental velocity
data, including those near the wall, are adequately
compatible with the present analysis.

A closer examination of Squire’s concepts provides more
insight into how different roughness types differently
affect flow. The apparent reference location for
turbulence in Squire’s smooth wall model, y*=7.87, is a
consequence of overlooking turbulent processes in the so-
called laminar sublayer. As the actual reference location
for turbulence generation is the y=0 location, the frue
reference location using Squire’s concepts can be
regarded as being 7.87 wall units closer to the wall than
the apparent reference location built into Squire’s model.
In this framework, the present analyses for naturally
rough pipes and hydraulically smooth rough pipes can be
interpreted as having reference locations respectively at
the wall and at the edge of the roughness elements.
Perhaps, for non-random roughness, the larger eddies
which exist at lower Reynolds numbers cannot get
through the relatively small spaces between the
roughness elements, so the reference location for the
origin of turbulence is at the tops of the roughness
elements, leading to the actual and predicted
hydraulically smooth behaviour. Conversely, the smaller
eddies at higher Reynolds numbers can reach the wall,
leading to the actual and predicted agreement with the
Colebrook-White equation. It follows that the transition
between the two could then be a result of a higher
fraction of eddies extending to the wall with increasing
Reynolds number.

It may be noted that, as shown by Beattic (1996),
Squire’s empirical form of eddy viscosity (equation 2) is
a first-order approximation of the mechanistically-based
eddy viscosity of Beattie (1993).



As noted earlier, contrary to the traditional viewpoint,
roughness elements, as modelled here, remain in the
laminar (in reality, “viscous”) sublayer even in the
“completely rough” region of friction characteristics.
Nevertheless, with increasing Reynolds number,
roughness elements will eventually extend into the
turbulent core, as can be deduced from the trends of
Figure 2. Although the present analysis has not examined
this case, a possibility suggested by the model is that, at
least if a constant effective near-wall “roughness”
viscosity simulates the velocity profile within the
roughness region rather than just the local velocity at its
edge, then, when the roughness extends to u*=7.8 and
beyond, the turbulent core velocity profile will revert to a
new universal-like profile insofar as it will be
independent of Reynolds number. Consistent with this
concept are the experimental friction factor data of
Millionshchikov et al (1973) for artificially roughened
ducts. After reaching an apparent Reynolds-number
independent “completely rough” friction factor asymptote
at higher Reynolds numbers, their friction factors
eventually revert to a strong dependence on Reynolds
numbers at even higher Reynolds numbers. An example
is shown in Figure 5.
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Figure 5 : Rough pipe (hemispherical projections)

friction factors reverting to a dependence on Reynolds
number at sufficiently large Reynolds numbers
(Millionshchikov et al 1973), and hydraulically similar
behaviour shown by smooth pipe flow with increased
near-wall viscosity (Fleming et al 1972).

The present analysis, in which rough pipe flows are
simulated by smooth tube flows with increased near-wall
viscosity, implies such smooth tube flows should have
friction characteristics similar to those of rough pipes.
Available data support this. Fleming et al (1972)
measured pressure losses for mercury flowing in copper
pipes. The resulting near-wall amalgam layer fluid has a
higher viscosity. At moderate Reynolds numbers, friction
factors are similar to those for rough pipes, including the
trend of constant friction factors, similar to “fully rough”
friction factors. At sufficiently high Reynolds numbers,
their friction factors reverted to a strong dependence on
Reynolds numbers. This is also compatible with the
present predictions. An example of their data is given in
Figure 5.
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Another, more widely encountered flow with increased
near wall viscosity is “annular” gas-liquid pipe flow, in
which the liquid naturally flows as a film adjacent to the
wall. At low pressures, the gas phase Reynolds number is
necessarily confined to relatively low values, and the
liquid film is confined to the viscous sublayer if the gas
phase. In line with the present analysis, such flows are
widely modelled by gas flow in a rough pipe of effective
roughness determined by the film thickness (Hewitt and
Hall-Taylor 1970). At higher pressures, higher gas
densities result in higher gas Reynolds numbers for
nominally similar annular flows, so the liquid film region
extends into the gas turbulent core. The present analysis
suggests friction factors for such flows would become
independent of film thickness and instead depend on
Reynolds number. Friction factors for high pressure
“annular” gas-liquid pipe flows do in fact correlate with
Reynolds number and not film thickness (Beattie 1973)
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