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ABSTRACT

A technique is being developed for the modelling of
incompressible unsteady fluid flow within grossly
deforming geometries, using Voronoi finite volumes.
The method is second order accurate in space, first order
in time, and is based on an explicit marching technique.
A major goal of this research is to model blood flow
within Ventricular Assist Devices (VAD’s). This paper
will briefly describe the motivation for the development
of the method, the method itself, and present some
initial results. These results are for the Von Karman
vortex street behind a 2D cylinder, a 2D pumping
chamber, and flow through a stationary 3D VAD.

INTRODUCTION
The technique is designed for use with grossly
deforming and/or complex geometries. Many

applications exist in industry and science where the
domain shape is changing, due either to physical
processes (such as pumps, free surface flows,
freezing/melting problems) or chemical ones (reactive
fronts).

The motivation to develop the method was provided
by a desire to model blood flow within Ventricular
Assist Devices (VADs).

VAD’s are mechanical pumps used to temporarily
bypass and assume the functionality of a heart ventricle
while, for instance, a donor heart is located. Problems
exist with the bio-compatibility of the VADs,
particularly with mechanical damage to blood cells near
the valves, but also with cell damage due to the flow
patterns and shear rates within the VAD itself. The
Spiral Vortex (SV) VAD is currently being developed at
the University of New South Wales[1] in an attempt to
provide a smoother blood flow, and thus reduce cell
damage.

Due to the high deformation of the VAD boundary
geometry and consequent extreme mesh distortion,
traditional finite volume/finite element methods have
considerable difficulty maintaining accuracy and
stability. It is thus a problem well suited to the new
technique.

THEORY

Navier Stokes Equations and their Discretisation

We assume that the blood flow is incompressible and
Newtonian, and thus the non-dimensional governing
equations are :

u, +V(uuT)+Vp—LV2u=0 (1a)
Re
Vou=0 (1b)

Delaunay Triangulations and Voronoi Diagrams

A Delaunay triangulation is a particular triangulation
of a set of points (seed nodes) in n dimensions. In 3D it
may be considered a “tetrahedralisation”. The
triangulation has certain properties which have made it
popular with finite element modellers. In this paper we
are less concerned with the triangulation itself, and
more concerned with a dual construction, the Voronoi
diagram. The Voronoi, or “Thiessen”, regions will be
used as the finite volumes.

Figure 1 below shows the relationship between the
two dual structures in the two dimensional case. By
definition the circumcircle of a triangle within a
Delaunay Triangulation contains no other nodes. This
property extends to three dimensions by considering
“circumballs”, and can be used to generate the Delaunay
triangulation.

O Seed Nodes

= Voronoi Edges
Delaunay Edges
Circumcircle

|

FIGURE 1 VORONOI-DELAUNAY DUALITY

The Voronoi regions have several properties which
make them suitable candidates for finite volumes:
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e The Voronoi regions represent the loci of points in
space nearer to a particular seed node than to any
other.

o The faces of the Voronoi regions perpendicularly
bisect the edges of the Delaunay triangulation and
thus the lines linking adjacent nodes.

e The Voronoi regions are always convex.

As the geometry deforms, the seed nodes move in
relation to each other and the connectivity of the
Delaunay triangulation changes. That is, nodes which
were linked separate and vice versa.

Discrete Approximations on Voronoi Meshes

Before describing the actual flow solution algorithm it
will be useful to define the discrete cell centred
approximations to the differential operators of
Divergence (D = \% -), Gradient (G =V) and Laplacian
(L =V2). These discrete operators have the form of
matrices:

D(u,)= [ Su,, a ,J Vol ,, =V -u (2a)

neibs

G((p f) = (Z(Pface afﬂce'J / VOIr:eH = V(p (Zb)

neibs

L((Pl) = (Zw#"ﬁmv

J/Voluu =V*(g) (20)
neiby i_neib

The summations in the above expressions all refer to
summing over the faces (and hence neighbours) of the
Voronoi cell i. The “face” subscripted quantities
required in the above need not be explicitly stored, but
can be simply interpolated as the mean of the value at
node i and its corresponding neighbour, neib. Also,

a,  represents the outward directed area vector of the

face, and d, ,,,, is the distance from node i to node neib.

In the code integral forms (without the division by cell
volume) are used for efficiency.

Flow Solution Algorithm

The Navier Stokes equations are solved in their
primitive variables form, using an explicit predictor-
corrector method, loosely based on the MAC
technique[2].  All variables (velocity components,
pressure) are collocated at the Voronoi seed nodes. A
secondary “flux” field is also stored on the Voronoi
faces.

The algorithm will be briefly outlined for the static
mesh case, followed by the modifications necessary to
accommodate mesh motion.

Each time step begins by explicitly “marching” a
discrete approximation to (1a), ignoring for the moment
the effect of the pressure gradient:

u =u - At [(Advection) - é L(u; )} 3)

The term (Advection) refers to the discrete

approximation to the advective flux of momentum. The
exact form of this is an active area of research, and a
detailed description of the form of this discretisation is
beyond the scope of this paper. It will suffice to say that
the current approximation is based around the well

known, 1st order “hybrid” scheme, and that a second
order non-diffusive scheme[3] is being developed.
The resulting «; are a non-solenoidal approximation

to the nmew time step velocity field, and must be
corrected to satisfy (1b) in some approximate sense.
This is done by generating a pressure field, so that when
the effect of this pressure field is applied to the u; the

resulting u"

are approximately solenoidal, in a sense
described below. This is known as a Pressure Poisson
Equation (PPE) method, and is closely related to the
Projection method[4]. The discrete equation for the

pressure is given by:
1
L{p)=— 4
(p:) =5 D(u) @)

The linear system of equations for p is symmetric, and
positive definite, and thus amenable to efficient iterative
solution methods. The corrected velocities are given by:

u' =u/ - Ar G(p,) )
The resulting velocities are approximately solenoidal
only, that is D(u'-m);t() . However a set of fluxes may

I

be defined at the Voronoi faces which are exactly
solenoidal in the sense of (2a). These fluxes are used in
the predictor phase of the next time step when
computing the discrete approximation to the advection
terms and play a similar role[5] to the staggering of
velocities and pressures in the original MAC method.

The solenoidal flux through face is given by:

Preiv — Pi
dl‘fﬂ(l‘b
Note that this is based on the uncorrected velocities

and the new pressures.

The explicit nature of the predictor step requires the
Courant-Friedrich-Lewy restriction on the time step;
essentially that fluid must not cross more than one cell
per step.

__ b
ﬂw}ﬂl’.‘! - u_fam- : afuc'e - AI‘afm

(6)

Flow Solution with Mesh Motion

Mesh motion is accommodated via an Arbitrary
Lagrangian Eulerian[6] (ALE) formulation, which
allows arbitrary mesh motion. This involves just two
essential modifications to the above description.

e The advection terms are modified, so that the fluxes
crossing the Voronoi faces are relative to the faces,
rather than relative to a fixed coordinate system.

e Equation (3) is modified to account for cell volume

variation:
= XZJOII”' u; - AI[(Advection) - é L(u:’):l 7)

This requires the additional storage of the old time
step volumes. Face velocities are taken to be the mean
of the adjacent nodal mesh velocities.

While the motion of the boundary nodes can usually
be specified explicitly, such a specifiction for the internal
nodes is complex and unwieldly. Currently two internal
node motion schemes have been successully
implemented. The first involves solving a second
Poisson equation at each time step for a potential, with
source terms based upon the deviation of the current cell
volume from a “desired cell volume”. The second
scheme is more computationally efficient. It involves



iteratively setting each new node postion to the
Voronoi-face-area weighted average of the connected
neighbour positions.

Mesh Reconnection

The unstructured methodology used here requires a
reconnection step when the mesh is deforming. This is
the process whereby the integrity of the Voronoi
diagram is maintained; it enables the Voronoi cells to
freely move in relation to each other, and for mesh
connectivity to alter. This is achieved by maintaining a
dual Delaunay triangulation, and using efficient local
transformation (“flipping”) algorithms which avoid the
necessity to regenerate the entire mesh.

The flipping procedures used are based on a local
circumball test of “Delaunayhood”. In 2D, if an edge
between 2 triangles is not Delaunay it is swapped[7]. In
3D the situation is more complex[8], with flipping
between a conglomerate of 3 tetrahedra joined at an
edge, and 2 tetrahedra joined at a face.

RESULTS

The code is being tested and evaluated in both 2D and
3D. Brief results will be given here for 3 examples: 2D
Vortex shedding behind a circular cylinder, 2D
pumping chamber, and 3D VAD “wash-through”.

2D Vortex Shedding from a Circular Cylinder

The classic fluid dynamics problem of the Von
Karman vortex street behind a circular cylinder provides
an excellent test problem for unsteady CFD codes,
allowing assessment of both temporal and spatial
accuracy. The case presented here is at a Reynolds
number (Re) of 100, based upon the free stream velocity
and the cylinder diameter. A portion of the mesh used
is shown in Figure 2, and it may be seen that a
“structured” region has been used around the cylinder

to resolve the boundary layer.  This is easily
accomplished with a Voronoi mesh simply by specifying
a regular distri nodes.

FIGURE 2 MESH IN THE VICINITY OF THE CYLINDER

This simulation used hybrid differencing, which was
second order accurate close to the cylinder and in the
wake, but only first order further away, where the mesh
was coarser. The oscillations were initially excited by
rotating the cylinder for the first 20 time steps, to cause a
perturbation. The domain was approximately 18
diameters high and wide.

Streaklines genrated by the model may be seen in
Figure 4, while Figure 5 shows the time history of the
total (viscous+pressure) lift and drag coefficients.

FIGURE 3 STREAKLINES, RE 100
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FIGURE 4 RE 100 LIFT AND DRAG

From the above data the Strouhal Number (St=fD/U, f
is the frequency of shedding) was computed as 0.161.
This is in good agreement with published data (Kim and
Benson[9] give 0.157).

2D Pumping Chamber

FIGURE 5 2D CHAMBER MESH, COMPRESSED AND
EXPANDED
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The second example was created mainly as a 2D test of
the mesh motion/reconnection algorithms. It is loosely
based upon the VAD geometry, but a single inlet/outlet
is used for simplicity. The diaphragm moves with a
sinusoidal velocity profile. Figure 5 show the mesh at
the two extreme cycles of the pumping cycle (“end-
systole” and “end-diastole”). Figure 6 shows velocity
vectors during early systole (compression), showing
vortices formed from separated flow during diastole.

FIGURE 6 VELOCITY VECTORS, EARLY SYSTOLE

3D VAD “Wash Through”

(a) Static VAD Flow: Ay
Streamiines

FIGURE 7 3D VAD FLOW: STREAMLINES

The final results presented here are from a preliminary
3D simulation involving the actual SV VAD geometry.
For this simulation the diaphragm, and hence mesh, are
static, and “blood” is pumped in through the inlet vessel
at constant velocity (about 10m/s), to observe the
steady state behaviour of the flow. The mesh consists of

approximately 10,000 Voronoi cells. It is expected that
larger meshes will be necessary for an accurate
simulation.

The streamlines in Figure 7 were tracked using
software developed by Dr David Knight, who is now
looking at developing a mass conservative tracking
algorithm for Voronoi meshes.

CONCLUSIONS

A flexible computational method has been developed
in two and three dimensions for modelling fluid flow
within grossly deforming geometries. Future work will
concentrate on applying the method to the real world
problem of the SV-VAD. Improvement of the numerical
accuracy, particularly with regard to advection is also a
priority. It is hoped eventually to parallelize the code
and apply it to the simulation of living human hearts.
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