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ABSTRACT

The nonlinear expansion and collapse of a gas bubble in
shallow water is investigated numerically. The flow is
assumed fo be potential and a boundary-integral method is
used to solve the Laplace equation of the velocity
potential. The evolution of the bubble and the free surface
has been simulated and compared with those of the deep
walter case.

INTRODUCTION

In the last two decades, the most successful theoretical
treatment of the motion of non-spherical bubble, which
allows large contortion of the bubble to be followed, has
been one based on numerical time integration coupled to a
boundary-integral spatial solution. The method has been
used to simulate the growth and collapse of bubbles near a
rigid boundary by Guerri, Lucca & Prosperetti (1981),
Blake, Taib & Doherty (1986), and Best & Kucera (1992).
It has also been used to simulate the interaction of a
bubble with a nearby free surface by Gibson & Blake
(1981), Blake et al. (1987), and Wang et al. (1995). In this
paper the said method is used to simulate the evolution of
a bubble in shallow water where its motion is influenced
by both of the sea floor and of the free water surface.

THEORETICAL ASPECTS

Consider the evolution of a gas bubble in an shallow
water as shown in Fig. 1. The depth of the water is defined
by h,. The bubble is assumed to have been initiated as a
tiny high-pressure spherical bubble at a distance 4 below
the initially quiescent free surface (along z=0). The flow
in the time-varying fluid domain Q (Fig. 1) is assumed to
be inviscid, incompressible and irrotational. The velocity
potential ¢(p) satisfies the Laplace equation and has the
following integral representation:

c(p(p)= I[ q’“')ch dy -y ok "”}s,(l)

where G(p,q) is the Green's function due to a unit source
in an infinite fluid domain plus its image about the sea
bottom and

o, pedQ=SUZ,
c(p)=

4, pell.

Here dQ is the boundary of the fluid domain which
comprises the bubble surface S and the sea surface L

d/dn=n-V is the normal derivative at the boundary
where n is the outward normal (see Fig. 1).
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Fig. 1. Geometry and coordinate system used to model the
growth and collapse of an explosion bubble in a shallow
water.

The kinematic and dynamic boundary conditions
governing the motion of the bubble and the free surface
are

dx
E—ch for pe SUZ,, (2-2a)
d v
¢ =1+ |V¢|2+5 —y)- a[VDj for pe S (2-3a)
1
= E|v¢|1+a*>z for peZ,. (2-3b)

x denotes the spatial position of the particle p on Q2
12

e=%, 5=(pgR,/0p)", Y=h/R, are non-

dimensional parameters which characterize the strength

(initial pressure), the buoyancy and the initial inception

position of the bubble respectively. € and § are termed the

strength and buoyancy parameters, respectively, and

n= / is the non-dimensional depth of the water.

Equations (1-3) form a complete set of equations which
describes the evolution of the gas-filled bubble and the
free surface.

The bubble is assumed to begin its existence at inception
as a very tiny high-pressure spherical bubble of radius R,
with zero wall velocity. The initial radius R, is chosen
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such that its maximum radius in an infinite fluid would be
equal to one.

The problem is axisymmetric along the z-axis (Fig. 1)
where r is the radial coordinate. The surface of the bubble
and the free surface are discretized as a set of N linear
elements, each of which is locally parametrized by & in the
range [0,1]. For the computation, the locally linear
representations of the potential ¢(E) and its derivative W(E)

are used. The locally linear representations of H&) and z(£)
are used for the calculation of influence coefficient matrix
except its diagonal elements for which a cubic-spline
representation of the bubble and free surface profiles has
been used.

Non-uniform elements are used on the bubble and the
free surface. On each surface, the lengths of the elements
are arranged in an increasing ratio series. For the free
surface the series begins from the axis of symmetry where
the curvature is greatest; for the bubble the series begins
from the expected position of the jet. After each time step,
the two surfaces are interpolated by a cubic and re-
discretized in the same two ratio series. For the results
described in the next section, 50 elements are used on one
symmetric half of the bubble and 50 elements for the free
surface. The free surface elements are distributed to radial
distance as large as 10R .

The time integration of (2) and (3) is done by using a
predictor-corrector scheme. To maintain the stability of the
solution the time-step size Ar must be carefully controlled.
In the present paper the time-step size At is chosen as

At = min{Ar,, A1}, (4a)
i 49 =7 (4b)
nml+—{|V¢{z+82(z—7J—E[—°Tl
v
A

At =-—¢_, (4c)
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where AQ is some constant. The maximum in (4b) is
obtained for all the nodes defining the bubble surface,
while that in (4<) is calculated for all the nodes describing
the free surface. With this choice of At, the change in ¢ at
each node is bounded above by A¢. The results in this
work are obtained with A¢ kept to around 0.03.

RESULTS AND DISCUSSION

To study the shallow water effect, we simulated the
following cases of )=e= (the infinite depth of water), 3.0,
2.0, and 1.5 while keeping €, v, & constant at 100, 1.0, and
1.5, respectively. The gas bubble and free-surface profiles
at  selected dimensionless times ¢ (normalized by

Rm(p/Ap)w) are shown in Figs. 2-5 for n=ee, 3.0, 2.0,
and 1.5, respectively.

The first case of the infinite depth of water is used for
the purpose of comparison with the other cases of limited
depth extent. At the end of the expansion phase (Fig. 2a),
the upper part of the bubble becomes elongated. At around
this moment of maximum volume, a noticeable portion of
the bubble is entrained into the base of the raised free
surface, hence causing a substantial free-surface hump.
The Bjerknes jet is formed near the beginning of the
collapse phase ( Fig. 2b). The free surface in the vicinity
of the axis of symmetry rises while that in the far region
falls, resulting in the formation of a free surface spike.

For the case of N=3.0 (Fig. 3), the bubble is initiated at
a distance of one maximum radius R,, of the bubble from
the free surface and 2R, from the sea bottom. The
evolution of the bubble and  the free surface is
approximalely the same as those for infinite depth of water
(Fig. 2) for the whole expansion phase and most of the
collapse phase. The flow field is also dominated by the
Bjerknes effect of the free surface. Only at the end of the
collapse phase, does the bubble move more downwards
spatially and with a stronger downward jet. This can be
attributed to the accentuation of the Bjerknes effect due to
the presence of the rigid sea bottom.

For the case of n=2.0 (Fig. 4), the bubble is initiated at
R,, both from the free surface and from the sea bottom.
The effect of the shallow water becomes more noticeable
towards the later stage of the expansion phase when part
of the bubble surface approaches the sea bottom. During
the collapse phase, the bubble is repelled by the free
surface and attracted by the sea bottom due to the Bjerknes
effect. In this case, the bubble migrates even more strongly
downwards. A very broad and stronger Bjerknes jet is
observed near the end of the collapse phase.

Finally for the case of n=1.5 (Fig. 5), the bubble
is initiated at R,, from the free surface and 0.5R,, from the
sea bottom. A large part of the bubble surface is flattened
by the sea bottom in the expansion phase. The bubble is
attracted by the sea bottom during the collapse phase. The
Bjerknes jet is formed during the early stage of the
collapse, its width is increased as the bubble collapses. At
the end of the collapse phase, the bubble hugs the sea
bottom with the Bjerknes jet impacting on the sea bottom
as soon as it penetrates the opposite end of the bubble.

CONCLUSION

The detailed dynamical behaviour of pulsating gas
products (bubble) of underwater explosions in shallow
water has been successfully modelled, simulated and
analyzed.
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Fig. 2. Evolution of bubble and free surface shapes
for e=100, y=10, §=05, and n=-c during (a)
expansion phase at dimensionless times ¢ (1) 0.000,
(2) 0.069, (3) 0. 272, (4) 0. 653, and (b) collapse
phase at dimensionless times ¢ (1) 0. 653, (2) 0947,
(3) 1. 098, (4) 1.207, (5) 1. 295. '
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Fig. 3. Evolution of bubble and free surface shapes
for e=100, y=10, 8=0.5, and n=3.0 during (a)
expansion phase at dimensionless times ¢ (1) 0.000,
(2) 0.068, (3) 0.276, (4) 0. 666, and (b) collapse
phase at dimensionless times 7 (1) 0. 666, (2) 1.000,
(3) 1. 156, (4) 1.274, (5) 1. 331.
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Fig. 4. Evolution of bubble and free surface shapes
for e=100, y=10, §=05, and 11=2.0 during (a)
expansion phase at dimensionless times ¢ (1) 0.000,
(2) 0.071, (3) 0.288, (4) 0. 691, and (b) collapse
phase at dimensionless times £ (1) 0. 691, (2) 1.140,
(3) 1. 320, (4) 1.369, (5) 1. 399.
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Fig. 5. Evolution of bubble and free surface shapes
for €=100, y=10, §=05, and n=1.5 during (a)
expansion phase at dimensionless times ¢ (1) 0.000,
(2) 0.071, (3) 0. 307, (4) 0. 719, and (b) collapse
phase at dimensionless times ¢ (1) 0. 719, (2) 1. 174,
(3) 1. 342, (4) 1. 401, (5) 1. 454.



