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ABSTRACT

In this paper results from numerical simulations for
the transition to three-dimensional flow for a circular
cylinder wake are compared with experimental visu-
alisations and data. The simulations were performed
with a spectral-element method. Both shedding fre-
quency and base suctions are predicted to within
experimental error in the two-dimensional shedding
regimes. The initial instability wavelength (mode A)
closely matches the measured wavelength from ex-
periments as does the second instability (mode B)
which occurs at slightly higher Reynolds numbers.
There are indications that the interaction of these
two modes may suppress the period-doubling found
in previous simulations.

INTRODUCTION

Recently, there has been renewed interest in the clas-
sic problem of flow past a circular cylinder and, in
particular, the development of the three-dimensional
instability. Considerable progress has been made, ex-
perimentally analytically and numerically, in under-
standing the details of the transition process. This
problem is important because it is perhaps the sim-
plest generic bluff-body wake flow system and results
are likely to be relevant to other more complex wake
flow systems. There is also the prospect of improv-
ing our understanding of the route to turbulence for
wakes.

Karniadakis and Triantafyllou (1992) were among
the first to predict the three-dimensional wake struc-
tures computationally. These authors found the crit-
ical Reynolds number for 3D transition (Re ~ 200)
consistent with the experimentally determined value
(Re = 180) (given the blockage effect of the nar-
row domain). More importantly, they suggest that
the route to turbulence is via the classical period-
doubling route from chaos theory. Since then Noack

and Eckelmann (1994) have used a global Galerkin
method to model the three-dimensional transition.
Using a Floquet analysis based on this method they
find that the transition Reynolds number is approxi-
mately 170 with the most unstable mode possessing
a wavelength of about 1.8 cylinder diameters (D).
This is broadly in agreement with their experimental
result of approximately 1.7D. In contrast, the in-
stability modes observed by Williamson (1988), and
subsequently by Mansy, Yang and Williams (1994),
and Norberg (1994), possessed a'spanwise wave-
length of the order of 3-4D at the onset of three-
dimensionality (mode A) and reduced to about 11D
for Re > 250 (mode B). A recent paper by Hender-
son and Barkley (1995) using a Floquet analysis based
on two-dimensional spectral element simulations has
predicted the initial instability wavelength (mode A)
to be about 40D and the transition Reynolds num-
ber to be about Re = 190. Thompson, Hourigan
and Sheridan (1994) have computed the two instab’i-
ity modes using a spectral/spectral element code and
have found the spanwise wavelength of the structures
to be in agreement with the experimental findings of
Williamson (1988), and the Floquet analysis of Hen-
derson and Barkley (1995). Recently, Zhang et al.
(1995) (including Noack and Eckelmann) used a fi-
nite volume method to look at the initial stages of the
transition to three-dimensionality. They also found
results more in line with the experimental findings
for the two shedding modes. In addition, they find
that a three-dimensional mode with a wavelength of
approximately 20) can be induced by perturbing the
flow in a certain way.

It is the purpose of this paper to explore the agree-
ment (or otherwise) between the computational mod-
elling, the semi-analytical results and the experimen-
tal measurements.
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METHOD

The spectral-element method was used for the spatial
discretisation of the unsteady incompressible Navier-
Stokes equations which govern the flow. This is a
Galerkin finite-element method which uses high-order
Lagrangian interpolants within each element. The
node points correspond to the integration points for
Gauss-Legendre-Lobatto quadrature. This leads to
particular efficiencies, such as diagonal mass matri-
ces and significantly reduced cost for the evaluation
of the integrals resulting from the application of the
weighted residual technique. (These features are com-
mon to spectral methods). Other numerical devices
leading to computational efficiencies include static
condensation which reduces the size of matrix sub-
problems resulting from the time discretisation.

The equations are discretised in time using a clas-
sical three-step splitting technique as described in
Karnidakis et al. (1991). The substeps treat the con-
vection, pressure and diffusion terms respectively. A
higher-order boundary condition is used for the pres-
sure substep which ensures overall second-order tem-
poral accuracy. Details of the method can be found
in Karniadakis et al. (1991), Karniadakis and Tri-
antafyllou (1992) and Thompson et al. (1995), at
this conference.

For the three-dimensional simulations, the span-
wise direction is treated using the Galerkin Fourier
method and hence periodic boundary conditions are
imposed. This has implications for the wavelengths
that can be represented; this point will be addressed
later.

RESULTS

Figure 1 shows a close-up in the vicinity of the cylin-
der of a typical spectral-element mesh used for the
simulations. For Reynolds numbers in the range 100-
200 the outer boundary needs to be of the order of 10-
15 cylinder diameters from the cylinder to predict the
Strouhal-Reynolds number variation to within about
1%. Some care was exercised in placing and sizing
the elements to give good resolution. Typically 8th to
12th order polynomial interpolants were used within
the elements to resolve the velocity field.

Since the spectral-element method only enforces
continuity in the function (velocity field) but not the
derivatives at element boundaries, inadequate resolu-
tion is usually reflected in discontinuities in deriva-
tive quantities. Thus, a useful indication of adequate
resolution is provided by examining the continuity of
the vorticity field across element boundaries. This
is likely to be a stronger test than, for example, ex-
amining the variation of Strouhal shedding frequency
with polynomial interpolation order (as used by Kar-
niadakis and Triantafyllou (1992)). The latter may
only be a function of providing adequate resolution
in a limited region (such as near the cylinder) while
the former can provide a global accuracy indicator.
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Figure 1: Two-dimensional spectral-element mesh in the
neighbourhood of the cylinder. For this mesh eighth-order
polynomial interpolating functions are used in each ele-
ment in each direction.

Two-dimensional simulations reproduce
the Strouhal-Reynolds number relationship and the
variation of base suction with Reynolds number in the
two-dimensional regime. The base suction variation is
shown in Figure 2. The base suctions agree well with
the experimental results in the two-dimensional shed-
ding regime. After transition the three-dimensional
simulations predict there is a drop in base suction in
line with the experimental observations. Experimen-
tally, the transition Reynolds number depends sensi-
tively on end conditions so it is difficult to perform a
quantitative comparison.
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Figure 2: Variation of base suction with Reynolds num-
ber. The circles and solid line show the results from a two-
dimensional simulation and the crosses are experimental
results obtained by Williamson and Roshko (1990). The
drop in the suction at Re = 180 is due to the onset of
three-dimensional shedding.

As described previously, the experimental flow vi-
sualisations indicate that the development of the
three-dimensionality involves at least two clearly de-
fined stages. It is found that just after the onset of
three-dimensional flow at a Reynolds number close
to 200, streamwise vortex structures form which are
periodic and have a spanwise wavelength of 3—4 cylin-
der diameters. This is called Mode A by Williamson



(1988) and has since been verified by others (Mansy,
Yang and Williams, 1994, Norberg 1994). At a
Reynolds number of order 250 a second mode, Mode
B, begins to take over. This mode is less periodic
(or more affected by small perturbations) and has a
spanwise wavelength close to one cylinder diameter.
The initial stage (mode A) may not even occur ex-
perimentally unless the aspect ratio of the cylinder is
large or special end conditions are employed to reduce
end effects. In both cases, the three-dimensionality
manifests itself as streamwise vortex loops between
the predominantly two dimensional spanwise vortex
rollers which make up the vortex street.

Figure 3: Top: Plan view of mode A three-dimensional
flow at Re = 210. The vertically aligned (spanwise)
structures are pressure isosurfaces highlighting the two-
dimensional vortex street and the streamwise structures
linking the spanwise vortices are isosurfaces of positive
and negative streamwise vorticity. The spanwise wave-
length of the streamwise structures is 7D. Bottom: Per-
spective view showing the same strucures. Flow is from
left to right.

Figure 3 is an isosurface plot showing pressure iso-
surfaces (-0.3 pu?,) indicating the placement of the
two-dimensional spanwise vortex rollers, and isosur-
faces of streamwise vorticity (+ 0.6 ©e /D) which
link the spanwise vortex structures. The Reynolds
number is 210. This corresponds to the mode A
shedding as defined by Williamson (1988). The flow
is from left to right. The cylinder is obscured by
the vortex sheet attached to it. The span shown is
27 diameters which corresponds to twice the compu-
tational span. The predominantly two-dimensional
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spanwise vortex rollers remain but are connected by
streamwise vortex loops. These structures form in
the region of high strain between the Strouhal vor-
tices as they are forming. The Reynolds number in
this case is just in excess of the transition Reynolds
number and the shedding is periodic. (Simulations
have been performed with increased span sizes to ver-
ify this result.) The simulations also produce Mode
B for Reynolds numbers close to 250. This mode
appears to be maintained for much higher Reynolds
numbers and can be seen, for example, in the visu-
alisations of Wu et al. (1994) at Re = 1000, and
Wei and Smith (1986) at Re = 4350. The span-
wise wavelength of the three-dimensional structures
is almost constant for Re < 1000. For much larger
Reynolds numbers the flow is more sensitive and tur-
bulent in the near wake and the wavelength is more
difficult to determine accurately.

Figure 4: Same as for previous figure but for a Reynolds
number of 250. The three-dimensional structures corre-
spond to mode B shedding.

The recent Floquet analysis by Barkley and Hen-
derson (1995) indicates that the development of
Mode A is due to a natural instability of the two-
dimensional Strouhal shedding at a Reynolds number
of about 190 and the instability wavelength is close
to 4D. Both the present results, and the experimen-
tal results of several experimental groups (Williamson
(1988), Mansy, Yang and Williams (1994), and Nor-
berg (1994)) agree with the Floquet analysis. How-
ever, since there has been disagreement in the liter-
ature on the instability wavelength both numerically
and experimentally, (Noack and Eckelmann (1994),
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Noack, Ko6nig and Eckelmann (1993)), this point was
further addressed by performing numerically experi-
ments to determine the growth rate of different wave-
lengths. From a perturbed two-dimensional solution,
three-dimensional simulations were performed for dif-
ferent span sizes including only the lowest Fourier
modes. The Reynolds number was 250. Figure 5
shows the results. The growth rate («) is plotted
against the wavelength of the Fourier mode. The
wavelength is unstable only if the amplitude multi-
plier (@) is greater than unity. The figure shows
the maximum growth rate occurs at about 3.4D—
consistent with the observed experimental value (3-
4D) and in line with the Floquet analysis (3.96D).
These calculations were done on a narrow domain
X; = 7D, so blockage may affect the result. An in-
teresting point is that only modes with wavelengths
in the range 2.7—6D appear to be unstable. This
would seem to indicate that the mode B instability
will only occur after the mode A wavelength has been
established. Of course, end-effects or very high per-
turbation levels may provide other paths for the de-
velopment of the mode B structures.
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Figure 5: Amplitude multiplier (a) as a function of
spanwise wavelength for the numerical stability analysis.
The instability will grow for & > 1. Simulations at lower
wavelengths suggest that the multiplier is less than unity
for @ < 2.7D. The Reynolds number is 250.

Another important issue is the nature of the tran-
sition to turbulence. Karniadakis and Triantafyl-
lou (1992) used a spectral-element simulation to try
to resolve the route to turbulence in wake flow sys-
tems. They found that the wake undergoes a series
of period-doublings and speculated that wake turbu-
lence is due to the classical period-doubling route to
chaos. Recent experimental results have found some
evidence to support their conjecture (Williams et al.
1995); however, their results (and conclusions) were
influenced by using a span size that was too small
to capture Mode A. With the inclusion of Mode A,
it is not clear whether period-doubling occurs. Two
simulations were performed with equivalent spatial
resolution but with two different span sizes. The first
used a span size of 7 /2 as used by Karniadakis and
Triantafyllou (1992) and Tomboulides et al. (1992).
The Reynolds number was 250. Figure 6 shows a

time trace of the streamwise velocity component at
a point 1D downstream from the centre of the cylin-
der. Period-doubling can be seen clearly. The second
simulation used a span size of wDD. Here it is not
clear whether period-doubling is still occurring. At
this Reynolds number the flow does not settle down
to a periodic flow and it would seem that the complex
interaction occurring between mode A and mode B at
least masks the period-doubling, if not suppressing it.
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Figure 6: Spanwise velocity component as a function
of time at a point in the wake approximately 1.0 down-
stream of the cylinder center. Left: Span size = wD /2.
Period-doubling is clearly visible. Right: Span size = 7.D.
Period-doubling suppressed or obscured. The Reynolds
number is 250.
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