Twelfth Australasian Fluid Mechanics Conference
The University of Sydney, Australia 1995

863

A ROBUST FINITE ELEMENT AND STREAMLINE INTEGRATION METHOD

FOR NON-NEWTONIAN FLUID FLOWS: AVSS/SI

Junsuo Sun, Nhan Phan-Thien and Roger |. Tanner
Mechanical & Mechatronic Engineering Department
The University of Sydney
Sydney, New South Wales
Australia

ABSTRACT

We reported an adaptive viscoelastic stress
splitting and streamline integration method
(AVSS/SI), and applied the method to compute
the flow past a sphere in a tube filled with
a Maxwell fluid. Convergent solutions were
obtained up to a Weissenberg number of O(2.8),
representing a significant improvement over the
previous streamline integration method, which
ceased to converge at a Weissenberg number of
0(0.3). The results compared favourably with
those obtained by different techniques.

INTRODUCTION

Significant developments of viscoelastic com-
putational methods have been made in the last
decade (Crochet, 1989; Brown and McKinley,
1994). Four relatively accurate and stable meth-
ods have been noteworthy in the literature: the
Explicitly Elliptic Momentum Equation formu-
lation (EEME) (King et al, 1988), the Elas-
tic Viscous Split Stress formulation (EVSS) (Ra-
Jjagopalan et al., 1990), the consistent Streamline
Upwind/Petrov-Galerkin method (SUPG 4 x 4)
(Marchal and Crochet, 1987), and the high-order
finite element method (Talwar and Khomami,
1992). With these methods, convergent solutions
for the flow past a sphere in a tube filled with a
Maxwell fluid have been demonstrated up to a
Weissenberg number of at least 1.5 (W; < 1.6
by Lunsmann et al, 1993; W; < 2.2 by Jin et
al., 1991; W; < 1.5 by Crochet and Legat, 1992;
W; < 1.6 by Khomami, 1993). Recently, Fan
and Crochet (1995) developed an implementa-
tion of the EVSS using higher-order finite ele-

ments and a modified version of the streamline
upwind Petrov—Galerkin (SUPG) method. The
flow past a sphere in a tube was demonstrated to
be p-convergent; and the convergence region was
extended up to W; = 2.1. More recently, with the
EVSS formulation, Luo (1995) obtained a conver-
gent solution of the same problem up to W; = 2.8
using a transient algorithm, in which the opera-
tor splitting and SUPG (OS/SUPG) methods are
used for the kinematics and stress calculations re-
spectively.

In solving the constitutive equation for a vis-
coelastic fluid (which is hyperbolic in character),
other methods besides SUPG may also be suit-
able, such as streamline integration methods. In
streamline integration schemes dealing with in-
tegral constitutive equations, the stress is in-
tegrated along the streamline of a fluid parti-
cle. In the early work of Viriyayuthakorn and
Caswell (1980), the deformation history was com-
puted on the basis of the Lagrangian deforma-
tion of each element of the mesh. The diffi-
culty of this method is that badly distorted el-
ements may leads to an inaccurate stress calcu-
lation. This has been largely overcome in later
work, for example, the Streamline Finite Element
Method (SFEM) developed by Luo and Tanner
(1986), and the method developed by Dupont
and Crochet (1985). In the SFEM (Luo and
Tanner, 1986) the deformation history is inte-
grated along the existing streamlines connecting
element nodes where the viscoelastic stresses are
to be evaluated. Indeed, the SFEM maintain
accuracy and efficiency in the stress integration;
however, it is very inconvenient in problems with
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recirculating regions. This drawback was circum-
vented by Luo and Mitsoulis (1990) using con-
ventional quadratic elements in the finite element
calculation. Sun and Tanner (1994) further im-
proved the SFEM, using conventional triangular
elements so that an unstructured mesh can be
adopted, which allows complex flow geometries
to be easily simulated. In the evaluation of the
deformation history, both particle tracking and
Finger strain tensor calculations are performed
by using a fourth-order Runge-Kutta method. In
the integration of non-Newtonian extra stresses,
three Gauss-Laguerre quadratures (16 points, 32
points and 68 points) are used so that thin stress
layers often encountered in complex viscoelastic
flow can be captured. Although streamline in-
tegration algorithms are, in principle, quite suit-
able in solving the constitutive equation of hyper-
bolic type, the highest viscoelastic level reached
in the benchmark flow past a sphere in a tube
filled with a Maxwell fluid is only O(0.3) (see,
e.g., Sun and Tanner, 1994).

In this paper, we focus on how to split
adaptively the viscoelastic stress to obtain con-
vergent solutions at high Weissenberg numbers.
Then, we will use an adaptive viscoelastic stress
splitting and streamline integration method
(AVSS/SI) to calculate the benchmark flow past
a sphere in a tube.

MATHEMATICAL FORMULATION
Governing Equations

For a steady state, isothermal, incompressible
and creeping flow of a Maxwell fluid, the govern-
ing equations are the momentum and continuity
equations,

Vor—VP=0, (1)
V-V =0, (2)

and the constitutive equation, written in integral
form as

tog fet

T = — —_— 3

[ aw(5)) o
I f,’) - 6) dt',

where V, P and T are the velocity vector,
pressure and extra stress tensor, respectively; A
and 7 are the relaxation time and zero shear rate
viscosity of the constitutive fluid, respectively;
C! is the right relative Finger strain tensor;
and 6 is a unit tensor. Eqgs.(1)—(3), together
with appropriate boundary conditions, complete
the mathematical descriptions of the problem to
be solved. For most viscoelastic flows of practical

interests and theoretical importance, these sets
of governing equations are quite difficult, if

not impossible, to solve analytically without
significant simplification. Hence, numerical
methods are required.

Numerical Method

There are two widely used methods in the
treatment of the momentum equation for vis-
coelastic flows. One is the EEME (King et al,
1988). However, it is very difficult to implement
the EEME formulation with an arbitrary consti-
tutive equation; moreover, the traction boundary
condition cannot be simply applied in the discre-
tised EEME formulation. The other method is
the EVSS (Rajagopalan et al, 1990), in which
the viscoelastic stress is split into

T=T7%47", (4)

where 7° denotes the elastic part of the viscoelas-
tic stress and

T =2nD (5)
represents the viscous part, where 7, = 1 and

1
D= —2-(VV + VVT) is the rate of deformation

tensor. By substituting Eqgs. (4) and (5) into the
governing equations, Eqgs. (1)—(3), we arrive at

2V-(n,D) = VP+V-r° =0, (6)
V-V =0, (7)

: i1
e = /: %exp (T (8)

(c—l (t — t') — 5) dt' — 2n,D.

and

Although converged solutions up to a Weis-
senberg number of O(1.6) or higher have been
be obtained with the EVSS scheme, using by
a coupled method, the highest viscoelastic level
reached with the EVSS and a streamline integra-
tion method, in which a Picard iterative scheme
is used, is still a low Weissenberg number of
0(0.3). This lack of convergence is due partly
to the decoupled nature of the solution method,
and partly to the high level of elastic stress. To
illustrate this, we consider an element K, as an
example. We normalize the coordinates, velocity,
pressure and stress according to

_ v _
S, Vot Poui.
h’e Ivlmax |P'ma.x
=& £
o , in K,
e
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where x represents the coordinates, h, is the
characteristic size of the finite element K., |V| =

(V-V)*, and ||, represents the maximum



magnitude of the variable concerned. Hence, the
momentum equation, Eq. (6), can be written as

_ P _ _e
Leyry |—;’va +V-T =0, (9)
he 75 |
where
o = %n in K,. (10)
|75 |

€e

From Eq. (9) it can be easily seen that if > L,

the momentum equation is dominated by tefle vis-

€ = .
cous terms h—eVEV and we expect the kinematics
e

calculation to be stable. If Z—e ~ O(1), the vis-

e
cous and elastic (V-7¢) terms are of the same
€ z
order; and if h—e < 1, 1e. €, € he, the momen-

tum equation is dominated by the elastic terms
and the kinematics calculation is expected to be
overly sensitive to small changes in the elastic
stress.

To alleviate the difficulty caused by the sensi-
tivity of the kinematics to the stress calculations,
viscoelastic stress splitting must be adaptive, i.e.,
the value of viscous stress ¥ must have, at least,
the same order as that of the elastic stress ¢,

735 e 2 175 | » 10 K (11)
1 v -1 |V|max S
By replacing |Tij max With 7 we arrive at
he | 75|
Ne = a—m’ in K , (12)
‘ IV e ‘

where @ > 1 is a parameter. Now, let us re-
examine the momentum equation, Eq.(9), by
substituting Eq.(12) into Eq.(10); it is found
that €. = ah. > h.; hence, if this equation
is solved iteratively in a decoupled manner, the
sensitivity of the kinematics to small changes in
the elastic stress may be avoided. We call this
scheme, which splits the viscoelastic stress into
viscous and elastic components, in which the vis-
cous part assumes an adaptive value depending
on the magnitude of the elastic part, the adaptive
viscoelastic stress splitting (AVSS). If 7, is kept
constant at 77, the EVSS formulation is recovered.

The governing equations with the application
of the AVSS, Eqs. (6)—(8), can be solved by using
the mixed finite element and streamline integra-
tion method (for the detailed implementation,
the reader is referred to Sun and Tanner (1994)).
We call this method the AVSS/SI.

FLOW PAST A SPHERE IN A TUBE
We test the AVSS/SI by solving the benchmark
flow past a sphere in a tube filled with a Maxwell
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fluid. The ratio of tube to sphere radius is 2, and
the geometry and the boundary conditions have
been well defined in the literature (see, e.g., Lun-
smann et al., 1993). One of the interesting quan-
tities in flows past a sphere is the drag coefficient,

F .
defined as D, = = where F' is the drag force on

the sphere. A comTIr)arison of the predicted values
of D, by the AVSS/SI using the finest mesh that
we could afford and those recently found in the
literature is shown in Fig.1. When W; < 1.5,
our results agree well with those found in the lit-
erature. The results for 1.5 < W; < 2.2 are in
between the drag coefficient values reported by
Jin et al (1991) and those by Luo (1995). For
2.2 < W; < 2.8, our results are higher than
Luo’s results. By extrapolating D, to the polar
mesh size of 0.5h3, where hj is the polar mesh
size of finest mesh, we found the drag coefficient
decreases monotonically with increasing W;, and
tends to reach an asymptote which falls in the re-
gion of 4.00 < D, < 4.03, close to the asymptotic
value of about 4.02 reported by Fan and Cro-
chet (1995). The viscoelastic stresses predicted
at W; = 2.0 are tabulated in Table 1. Our re-
sults are in good agreement with those by Fan
and Crochet (1995), but differ to Luo’s results
(1995).
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Figure 1: The predicted drag coefficient versus
the Weissenberg number W;.

CONCLUSIONS

The standard viscoelastic stress splitting
scheme, when used in a decoupled manner, can
cause an oversensitivity in the kinematics with
small changes in the elastic stress, which leads to
numerical divergence. This can be largely alle-
viated by the proposed AVSS scheme. The pre-
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Tzz,min Trz,min Trr,min
Tzz,max T't‘z,ma.x T‘r‘f,ma.x
—0.425 | —44.4 —0.366
V
AVES /Sl 134 33 73.4
—0.427 | —45.2 —0.363
Fan & Crochet 55 3 202
L —0.552 | —-26.0 —0.572
1o 971 | 357 32.9

Table 1: The maximum and minimum values of
the extra stress predicted at W; = 2.0 by different
methods.

vious limitation of W; < 0(0.3) in the stream-
line integration scheme was caused mainly by
this oversensitivity (Sun and Tanner, 1994). The
numerical results show that the streamline inte-
gration method is actually more stable than the
SUPG, and the proposed AVSS/SI, which ex-
tended the convergence region for the solution of
the flow past a sphere problem from W; < 0(0.3)
to W; < 0(2.8), is robust.
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