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ABSTRACT

The flow regimes found in a narrow-gap Taylor-
Couette vessel with the inner cylinder rotating are sim-
ulated using a second-order numerical method. The
flow conditions span the range from wavy vortex flow
(with only one azimuthal frequency), through modu-
lated wavy vortex flow, to flow that can be considered
weakly turbulent. The chaotic advection of massless
marker particles is calculated, and statistical evidence
is presented that suggests that the axial mixing found
in all of these flow regimes can be modelled as a diffu-
sion process. Additionally, the effective axial diffusion
coefficient appears to be linearly proportional to the
Reynolds number based on the inner cylinder rotation
velocity and the gap width between cylinders. The mo-
tion of dense particles is also considered and it is found
that the mean settling velocity of an ensemble of dense
particles is of the same order as their free settling ve-
locity — a surprising result that is not expected from
results obtained from axisymmetric vortex flow.

INTRODUCTION

Taylor-Couette flow is the flow that occurs between
two concentric cylinders, either or both of which are
allowed to rotate. The flow has been studied exten-
sively since the seminal work of Taylor (1923), and
new flow regimes are regularly discovered. Andereck et
al. (1986) classify the possible regimes in their vessel
into eighteen primary regimes, with some coexisting.
When only the inner cylinder rotates, there are 5 pri-
mary flow regimes:

e cylindrical Couette flow,

e axisymmetric Taylor vortex flow,

e wavy vortex flow,

e modulated wavy vortex flow

e and turbulent vortex flow.

In the axisymmetric Taylor vortex regime, fluid par-
ticles are constrained to lie upon a toroidal surface, and

the only global mixing possible results from molecular
diffusion. Little work has previously appeared in the

literature examining particle trajectories or mixing in
wavy and modulated wavy vortex flow. Broomhead
and Ryrie (1988) performed a theoretical analysis on
a simple model of a wavy vortex flow and showed that
the presence of even a small wave amplitude on top
of an axisymmetric vortex flow would be sufficient to
introduce chaos into the system. This would have a
significant impact on particle paths and the mixing
in wavy vortex flow. Recent experimental results re-
ported by Moore and Cooney (1995) suggest that axial
dispersion in Taylor-Couette vessels varies almost lin-
early with the rotational Reynolds number for a wide
range of aspect ratios, through-flow Reynolds numbers
and rotational rates — even for rotation rates below the
onset of waviness. This result is somewhat surprising
and suggests that either the non-axisymmetric inflow
and outflow arrangements used in their vessel or the
presence of the throughflow (or both) are having a sig-
nificant effect on the dispersion in their experiments.

The study reported here originates in an industrial
application in which a through-flow Taylor-Couette
vessel was used to shear a suspension of particles. For
certain operating conditions it was observed that par-
ticles appeared to have a much shorter residence time
than the the nominal liquid residence time. Numerical
simulations of the flow regimes found in the industrial
study were therefore undertakenin order to understand
why the phenomenon was observed and to estimate the
solids’ residence time in the vessel. As a first step, the
small (axisymmetric) throughflow applicable to the in-
dustrial vessel was neglected.

A MEASURE OF MIXING

Once Taylor-Couette vortex flow ceases to be ax-
isymmetric, fluid particles are no longer constrained to
lie upon a toroidal surface (and hence within one vor-
tex) and are transported in the axial direction, mov-
ing from vortex to vortex. From a statistical point
of view, particles appear to diffuse in the axial direc-
tion, although the process that causes this movement is
chaotic advection, not diffusion. Ottino (1989) states
that ‘particle paths, streamlines and (to a lesser extent)
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streaklines are not sufficient to give a good picture of
mixing’. Determining chaotic particle paths is prob-
lematic because small numerical errors will result in
large errors in individual particle positions after long
times. However, Metcalfe (1995) has suggested that al-
though individual particle paths may be in considerable
error, the ensemble of a large number of particle paths
can give reliable statistical information, and that the
numerical results obtained from particle tracking can
be statistically robust.

Following Broomhead and Ryrie (1988), a measure
of mixing is defined using an effective particle diffusion
coefficient which is estimated on the basis of particle
paths. Because particles are constrained to lie between
the inner and outer radii of the vessel, and because they
are advected by a mean flow in the azimuthal direction,
only an axial (z) diffusion coefficient is considered here.

For a purely random process the r.m.s. displace-
ment for an ensemble of particles can be related to a
diffusion coeflicient. Defining
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where < @ > denotes the r.m.s. value of @, an effective
axial diffusion coefficient is defined by
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In axisymmetric vortex flow the effective axial diffu-
sion coefficient (eqn. 1) tends to zero as time becomes
very large, which states there is no global fluid mix-
ing. Once the flow ceases to be axisymmetric, fluid
particles move between vortices and the possibility of
efficient global mixing arises.

NUMERICAL METHOD

The numerical method is a three-dimensional fi-
nite difference code based on the Marker and Cell
(MAC) method and utilises cylindrical coordinates. A
nominally third order Flux-Corrected Transport (FCT)
methodology is used which ensures stability of the
scheme. Time-stepping is by way of an improved Eu-
ler algorithm which is second-order in time. Particle
trajectories are calculated using bi-quadratic interpo-
lation and second-order time integration. Because the
flow is in general unsteady (even when referred to a
rotating coordinate system) the fluid equations must
be solved at each time-step before updating the par-
ticle positions. The full solution must be followed for
tens of thousands of time-steps to provide meaningful
statistical information.

Visual inspection of the industrial vessel suggested
that the azimuthal wavelength of the wavy vortex flow
was approximately one sixteenth of the circumference
of the shear vessel and that the axial extent of a vor-
tex pair was approximately 2.5 times the gap width
between cylinders. Hence, a computational domain of
one gap width in the radial direction, 2.5 gap widths
in the axial direction and one sixteenth of the circum-
ference in the azimuthal direction is used for all sim-
ulations here. Although it is well known that the az-
imuthal and axial wavelengths of wavy vortex flow de-
pend on the Reynolds number, and further that for a
fixed Reynolds number there is no unique combination
of wavelengths (Coles 1965), a fixed domain size and
aspect ratio was used here for convenience. Fixing the

domain size and aspect ratio will determine the exact
flow state predicted by the simulations. The effect this
will have on the mixing statistics is unknown and must
be invetsigated further.

The ratio of gap width to inner cylinder radius is
1:20, which corresponds to a radius ratio n = 0.952.
Boundary conditions are no-slip on the inner and outer
cylinder walls and periodic in both the axial and az-
imuthal directions. The computational domain is thus
repeated infinitely in both 8 and z. The mesh size
is 32 x 80 x 80 or approximately 200 000 nodal points.
Initially, 20 000 particles (5000 fluid particles and 5000
each of three dense particle types) are scattered ran-
domly in the computational domain and are followed
using the particle tracking algorithm discussed in Rud-
man et al. (1994). The initial flow conditions used for
particle tracking are determined by running the simu-
lation until a statistically steady flow pattern has been
obtained.

RESULTS

Four values of Rey (= Vid/v) are considered, Re; =
524, 1047, 2094 and 4188 which correspond to operat-
ing conditions in the experiment of 12.5, 25, 50 and
100 r.p.m. for a liquor viscosity equal to that of wa-
ter. A value of Re; = 524, corresponds to wavy vortex
flow with only one azimuthal frequency, Re; = 1047
and 2094 correspond to modulated wavy vortex flow
and Re; = 4188 corresponds to weakly turbulent flow.
Although the numerical resolution was probably insuf-
ficient to accurately resolve all scales of motion in the
case of Re; = 4188, the results are included in sub-
sequent discussion. The effective diffusion coefficient
calculated in this case must be treated with caution,
although it is more likely to be underpredicted than
overpredicted by the simulation.

Fluid Particles

Plots of the initial fluid particle positions (projected
onto an axial plane) and subsequent particle positions
for Re; = 1047 and 2094 after two rotations of the
inner cylinder (or approximately 6-8 vortex turnover
times) are shown in figure 1. It is clearly seen that fluid
particles disperse widely in the axial direction in a very
short time. Circumferential mixing has also been con-
siderable, and after two rotations of the inner cylinder,
fluid particles that started in a region one sixteenth
of the total circumierence of the vessel are dispersed
around the entire circumference (not shown).

The normalised number density of particles per unit
length is shown in figure 2. The initial particle distribu-
tion is sharply peaked about zero, and the other curves
for particle number density after 2 revolutions of the
inner cylinder are also shown. Although the curves are
not identical, they are similar and their Gaussian-like
shape suggests that particle dispersion in these flow
regimes is behaving like a diffusion process.

A plot of the non-dimensional DZ(t) for the four
values of Reg is shown in figure 3, (plotted as a function
of number of rotations of the inner cylinder). Although
the results shown do not prove that lim,_ ., D.(t) is
non-zero, they do suggest that it is approaching an
asymptotic value of approximately 0.003. However, the
simulations must be continued for a considerable time
before a value could be stated with confidence.
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Figure 1: PARTICLE POSITIONS (PROJECTED ONTO
AN AXIAL PLANE) FOR FLUID PARTICLES. FROM
LEFT TO RIGHT: INITIAL PARTICLE POSITIONS AND
POSITIONS AFTER 2 ROTATIONS OF THE INNER
CYLINDER FOR Rey = 1047 AND 2094. THIS FIGURE
SHOWS THE CONSIDERABLE AXIAL MIXING THAT
RAPIDLY OCCURS IN THESE FLOW REGIMES.

More interesting is that the non-dimensional D. (1)
behaves almost identically for the values of Re; con-
sidered here. This spans the flow regimes from pure
wavy vortex flow, Re; = 524, to weakly turbulent vor-
tex flow, Re; = 4188. The results also suggest that D,
appears to be independent of Re;.

To obtain a dimensional value of the effective dif-
fusion coeflicient, D, must be scaled by dU, (where
[J is the velocity of the inner cylinder and d the gap
width.) The results therefore suggest that the dimen-
sional diffusion coefficient scales approximately linearly
with Re;. This means that chaotic advection of fluid
particles depends purely on rotation rate of the vessel
— the important result here is that increasing the rota-
tion rate by a given factor reduces the time taken to
achieve the same degree of axial mixing by a similar
factor.
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Figure 2. NORMALISED NUMBER DENSITY (PAR-
TICLES/UNIT 2-LENGTH) VS. z FOR FLUID PARTI-
CLES. THE SOLID LINE IS THE INITIAL NUMBER
DENSITY AND THE DASHED LINES ARE FOR Re; =
524, 1047, 2094 AND 4188 AFTER 2 ROTATIONS OF
THE INNER CYLINDER. THE NUMBER DENSITY IS
NORMALISED TO GIVE UNIT AREA UNDER THE
GRAPH.

In an experimental study of diffusion in turbulent
Taylor-Couette flow, Tam and Swinney (1987) find
that the effective axial diffusion coefficient scales like
Re‘? where 8 depends primarily on the the radius ra-
tio, n. Tam and Swinney only consider the range
0.494 < 7 < 0.875 and find that as 1 increases so does
3. For their smallest radius ratio (n = 0.494) they find
B = 0.7 and for their largest radius ratio (n = 0.875)
they find § = 0.85. It may be that in the limit as
n — 1, B — 1, although this is purely conjecture at
this time. However, the result of the simulations pre-
sented here (that 8 = 1 for n = 0.952) is not incon-
sistent with Tam and Swinney’s results. It also must
be kept in mind that Tam and Swinney’s experiments
were truly turbulent vortex flow, whereas the simula-
tions here are primarily for laminar wavy vortex flows.
In contrast to Tam and Swinney’s results are those of
Moore and Cooney (1995) who suggest that for a wide
range of parameters (including n), D, should scale like
Re}%®. These latter results are for a through-flow ves-
sel with non-axisymmetric inlet and outlet, and once
again are not directly comparable to the results pre-
sented here. Nevertheless, the current results are not
inconsistent with Moore and Cooney’s.

Heavy Particles

The transport of heavy particles in wavy vortex flow
regimes instigated this study, and particle trajectories
are also presented for three typical dense particle types.
The particle free-settling velocities are chosen to be
40, 10 and 2.5 m/hr or approximately 1.11, 0.28 and
0.07 cm/sec. A velocity of 40 m/hr (1.11 cm/sec) cor-
responds to 0.03 times the rotational velocity of the
inner cylinder for Re; = 524 and 0.00375 times the
inner cylinder velocity for Re; = 4188.

The mean settling velocity of the three different
ensembles of particles after two rotations of the in-
ner cylinder is presented in table 1. Although there
is considerable axial dispersion in the distribution of
dense particles of all types (not shown), the surprising
result is that the mean particle-settling velocity is of
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Figure 3: D (t) VERSUS NUMBER OF REVOLUTIONS
OF THE INNER CYLINDER.

Table 1: Mean settling velocity (in m/hr) based on
mean distance settled after two rotations of the inner
cylinder. Vs is the nominal free settling velocity (40,
10 and 2.5 m/hr).

[ Res | 524 | 1047 | 2094 [ 4188
Ve =40.0 | 39.9 | 46.8 | 49.3 | 484
Ve=10.0 |10.0 | 10.1 | 7.9 | 12.0
Vg =25 2.6 22 2.0 3.6

a similar magnitude to (and sometimes greater than)
the particles’ nominal free-settling velocity. The same
settling effect was inferred from results obtained from
the experimental vessel.

It has been shown (Marsh and Maxey 1990, Rud-
man et al. 1994) that in 2-D recirculating cellular flows
(which include axisymmetric Taylor-vortex flow) some
global settling of dense particles can occur for any ratio
of settling to cellular velocity. However when the set-
tling velocity is significantly less than the vertical com-
ponent of the cellular velocity, the proportion of parti-
cles that are able to settle from the flow is very small.
In this case, the majority of particles are trapped inside
retention zones.

In Taylor-Couette flow, the axial component of the
vortex velocity increases almost linearly as Re; in-
creases. If the flow were to remain axisymmetric, as
Rey increased the proportion of retained heavy parti-
cles would also increase and the average settling veloc-
ity of an ensemble of dense particles would tend to zero.
After the onset of waviness and the consequent mass
transfer of fluid between vortices, this result is unlikely
to hold, with dense particles able to settle with respect
to the fluid at the same time as being chaotically trans-
ported by the flow. The net result of gravitational set-
tling, centrifugal settling and chaotic transport is not
possible to predict a priori. It is seen here that their
combination results in the vortex recirculation having
little adverse affect on a dense particle’s ability to set-
tle in the mean. The estimates of mean settling veloc-
ity obtained here allow an estimate to be made of the
mean residence time of different sized particles in the
experiment.

CONCLUSIONS
The presence of modulated wavy vortices gives rise
to efficient mixing in narrow-gap Taylor-Couette ves-

sels. Even though the flow is laminar, the unsteady
three-dimensional nature of wavy vortices results in
chaotic advection of fluid elements. This is the primary
cause of efficient mixing. The results suggest that the
effective axial diffusion coeflicient is a linear function of
Re;. This observation has consequences for the way in
which Taylor-Couette flow is modelled in process appli-
cations. For flow that is known to be axisymmetric, the
assumption of a vortex pair being a ‘well-mixed tank’
is in error because a fluid particle is constrained to lie
upon a torus and does not mix with neighbouring tori
except via molecular diffusion. For flow occurring after
the onset of waviness, chaotic advection ensures that at
least some, if not all, fluid in a vortex pair communi-
cates with all other vortex pairs — in this case the entire
vessel may be considered to be a well-mixed tank.

The flow also allows dense particles to settle
through the vessel, and the general observation is that
the mean settling velocity of an ensemble of dense par-
ticles is of a similar magnitude (and sometimes slightly
faster) than the particles’ {ree settling velocity. This
has important consequences for estimating residence
times of dense particles in Taylor-Couette flow. It sug-
gests that the mean residence time is not strongly de-
pendent on rotation rate, and is a function of the free
settling velocity of the particle.
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