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ABSTRACT

Cbserved unexpectedly high turbulence intensities in the test section at cold runs have
indicated a drawback of the cryogenic technology. The present theoretical study suggests
two options of lowering the turbulence intensity in the test section at a cold run so that
measurements performed on a model are applicable to the full-scale structure.

IMTRODUCTION

The turbulence intensity is usually defined as the ratio of the r.m.s. velocity fluctua-
tion of the streamwise component to the magnitude of the mean velocity. The turbulence in-
tensity of the oncoming stream in tne test section,Tu.is a very important parameter in me-
asurements in the KKK(Kryo-Kanal K&ln) and in the ETW(European Transonic Wind Tunnel).The
atmospheric pressure cryogenic wind tunnel KXX- designed for low speed testing -is a con-
version of a conventional closed-circuit fan-driven atmospheric pressure tunnel built at
PILR X6ln. The cryogenic pressure tunnel ETW is designed to reach close to full-scale fli-
ght Reynolds numbers on transonic transport aircraft models. Figure 1 shows an outline of
a section of the FTW. The turbulence intensity Tu determines the degree to which measurem-
ents performed on a model can be applied to the full-scale structure. It is necessary to
design wind tunnels of low turbulence intensity if model measurements are to be applicable
to the design of full-scale aircraft/6/.Figure 2 shows the turbulence intensity Tu as a fu
nction of the magnitude of the mean velocity of the oncoming stream for two values of the
temperature of the working fluid /9/. Results like those shown in figure 2 indicate a dra
wback of the cryogenic technology. The control of the turbulence level at the start of the
settling chamber by means of fine-mesh screens seems to be sufficiently well understood /
6,9/. The present study focuses solely on the following open issues concerning the ETW op-
erating at subsonic test-section Mach numbers:

A. Consider the ratio of the r.m.s. velocity fluctuation of the streamwise component at t-
he start of the test section to the r.m.s. velocity fluctuation of the streamwise compon-
ent at the start of the settling chamber. What are the physical reasons for the departure
of this ratio at a cold run from the corresponding ratio at a run at normal temperature?

B. Can the turbulence intensity in the test section at a cold run be lowered so that the
measurements performed on a model are applicable to the full-scale structure?

SETTLING CHAMBER
The present brief account focuses solely on two sections of the tunnel ahead of the tes-
t section: the nozzle and the settling chamber. The flow in the settling chamber is consi-
dered a llewtonian fluid flow of constant density o and constant kinematic viscosityv :tur
bulent fluctuations of an external force appearing in an inertial frame of reference are
excluded. The turbulent kinetic energy equation then becomes in Cartesian tensor notation
/4/
de/At + Vide/dxy = S5k E /P - O (3 /p)/Oxk - £, ¢ )

where t,x;.,e,e,Vk ,Jk ,5jk andf jk are, respectively , time, Cartesian coordinate, turbu-

lent kinetic energy, dissipation of turbulent energy, Cartesian component of mean veloci-

ty, of turbulent energy flux, of Reynolds stress, and of mean strain rate. Except for a

wall zone, the mean-velocity field is a steady homogeneous parallel stream. The turbulence

in this stream can be considered isotropic, and homogeneous in planes perpendicular to th-
e tunnel axis. e is independent of time. A rigorous argument that the diffusion term is ne
gligible is given following eq. (13). The xq-axis collapses with the tunnel axis, x¢=0 at

the start of the settling chamber, xq=x14 at the start of the nozzle. The balance equa-

tion (1) in the homogeneous narallel stream then simplifies to
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de/dxq = —ae , a = (10V)/(A%v4(0)) (2)
where A is the Taylor microscale. 1f a in eqg.(2) were known the relationship (2) would be
come an ordinary differential equation for e. Its general solution can be written

x1
e = k exp( -I al(z)dz ) , 0% xq£X44 (3)
0

where 2z is a dummy variable for x4. The arbitrary constant is specified by requiring k =
e(0).

NOZZLE

A modelled form of the balance equation for the turbulent kinetic energy in Favre-aver-
aged form in steady compressible flow at high turbulence Reynolds numbers and without ex-—
ternal-force effects is in Cartesian tensor notation /1/

de
Vibe/0xi=51k(£ik/p)—(1/p)OJi/bxi—E.—(Ctezfp%ﬁtg)(OPﬂ5xi){ép/dxi), —Ji:(ctpez/dée)giz
where e,Vj,Sijk are, respectlvely ,-in Favre-averaged form- turbulent kinetic energy,xji-co-
mponent of fluid velocity,Cartesian component of Reynolds stress. Zik and & denote Carte-—
sian component of the strain rate of the Favre-averaged-velocity fileld,the (not negative)
viscous dissipation function( cf. /3/ ). pand p are, respectively , (unweighted) ensemble-
averaged density and static pressure. The coefficients Ct ,de and dt are expected to be
of physical order unity. In the following we put x41=x, Vq=V,-511/f=s, J1=J. The quasi-one-
dimensional equivalent of eq.(4),

(v/2)ds/dx = (1o)d [((Crpe?) /(D €)) (de/dx)] /dx - sdV/dx + Q(x)

(4)

(5)

with
Q(x) = —(v/2)d(2e-s)/dx —£—((Ctez)/(p2dta))(dp/dx)(dp/dx) R 6)

is adopted in a streamtube along the tunnel axis. A rigorous argument that the diffusion

term in eq.(5) is negligible is given following eq.(13). The streamtube relation (5) then
becomes

(V/2)ds/dx = —sav/dx + Q) . Lt

If Q(x) and V(x) were known eg.(7) would be ordinary differential equation for s. A for-
mal representation of its general solution is

%
s = (V(xd)/v(x))2 { @ = j 20(z) (V(z)/(V(xg))2)dz}, xgs x= xt (8)
*d
where x=xt at the start of the test section. The arbitrary constant C is determined by re-
quiring s(xg)=C. It follows from eqs. (3),(8) and

X
J alz)v(z)dz <0 for xg<x$xt (9)
Xd
that
S(x)/s(0) € (VIxg)/V(x))Z ,  xg€ X< Xt - (10)

A rigorous argument that the inequality (9) holds is given following the inequality (125
The velocity ratio in the inequality (10) can be replaced by a product of an area and den-

sity ratio with the aid of the streamtube approximation of the continuity equation for
the nozzle flow,

11

PlxgIVixglAlxg) = P(x)VO)A(X) ()

where Al{x) is the nozzle-area distribution. We obtain

S(x)/s(0)< ((P(x)/plxg)) (A(x)/A(xa) )2 |, xgexg xt : (12)

The well-known streamtube relation between the local fluid density and the local Mach nu-
mber for steady,continucus, nonviscous, nonconducting, nondiffusing flow of an ideal gas
of constant specific heats in the absence of external forces yields: 0(x¢)/P(xq) is prac-
tically determined by the test-section Mach number at x=x{ if the settling-chamber Mach
number is less than 0.1. Well-known streamtube relations for steady,continuous,nonviscous
nonconducting, nondiffusing flow of an ideal gas of constant specific heats in the absen-
ce of external forces, and eq.(11) lead to dp/dx, dp/dx}O in the contraction. Experiments
indicate d(2e-s)/dx40 in the contraction , at least if density fluctuations are insig-
nificant(cf. /6/).

Introduce a one-parameter family of mean flows through the settling chamber and the no-
zzle , feasible in the ETW. The parameter is the Reynolds number

Re = (V(xg)p(xp)W)/ulxq) (13

with the reference length W, p(x¢) , and the !lach number
M= Vi) /CHR/MITxe )% where T = (pm)/(pR)

fixed. ¥ y,m,R, p ,and T denote, respectively , ratio of specific heats, mean molecular we-—
ight, universal gas constant, ensemble-averaged viscosity and temperature. The mean flow
of a cold run and of a run at normal temperature are included in the family. Appropriate
outer expansions - in the sense of the method of matched asymptotic expansions - (cf. /8/)

are of the form
G =Gp +o[1] , J/(PxgIVixg)sixg)) = o[1] (14)
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in the 1limit process
Re =00 with position, M, p(x¢), W fixed. (15)

The subscript 0 denotes outer limit -different from zero and finite. The symbol G stands
for s/s(xg) , e/e(0) , q = (2QV)/(s{xg)Vixg)) , V/Vixg) , s(xg)/e(0) ; a =€ /(V(0)e) for
Osx<xg - Statement (14) relies on the assumption that Vi2eMxq and £ in eq.(4) are of the
same mathematical order, and the Reynolds stress in the Favre-averaged momentum equation
tends to zero in the limit process (15).

In view of statement (14),(15): All terms of eq.(4) - in the homogeneous parallel stre-
am in the settling chamber - multiplied by 1/(e(0)V(0)), and all terms in eq.(5) multi-
plied by 1/(s(x4)V(xg)) are 0[1]( i.e. different from zero and finite ) in the limit pro-
(15) except for the diffusion terms which are o[1] in the 1imit process (15).

The outer expansion of a(x) and of g(x) can be formally written:

a(x)=ag(x)+a,(x)g(Re)+o[g(Re)] ,a0>0 (16) , q(x)=qo(x)+q1(x)h(Re)+o[h(Re)] {47
in the limit process (15). The set of coefficients in eqs. (16),(17) for a cold run and
for a run at normal temperature agree. There is no need to specify the gauge functions

g(Re),h(Re) in the present study.
An immediate consequence of egs. (3) (8),and (11) for the nozzle flow is

i (18)
In(s(x)/s(0)) = - f alz)dz + 2ln((P(IAGA) ) /(P{xg)Alxg))) + 1nH(x) + 1n(1+B(x))
for xg4gX<xXt, where ) %
B(x) = J (a(2) - qg(zNdztix)™ | Hex) = 4 4 § qn(2)da. (19)
Xqd Xd 0

At sufficiently high Reynolds number Re, we can write approximately 1n(1+B(x))=B(x). (20)
In view of egs. (18) to (20) and (16),(17) we find

s{x) _ d D(x)A(x] h(Re) * *d
lnETﬁT = _gx ag(zldz + 21n5T;aTKT;ET + 1InH(x) + nrzT—édq:(z)dz - g(Re)Oj aq(z)dz , (21)
Xg<x<xy , if higher order terms o g(Re). and o[h(Re) are disregarded. An immediate con-
sequence of eq.(21) is (22)

X
In((s(x)/s(0))c/(s(x)/s(0))y)= %T;T I ql(z)dz(h(ReC)—h(ReN))_(g(ReC)-g(ReN))g aq(z)dz ,
Xd

xd<& X& X¢ , where the subscripts C and N denote conditions evaluated at a cold run and at
a run at normal temperature, respectively.
Let the superscript ' refer to a slightly modified ETW. The modification consists in

the installation of n additional screens between the honeycomb and the start of the sett-
ling chamber(at x=0). All screens installed are of the same type, tunnel/model geometry
unaltered. Experience suggests(cf. /10/) that A%/v is - for given (single) screen geomet—
ry - a function solely of x and V(0) but not of n. To the streamtube approximation y the
flow speed V(0) can be can be expressed in terms of V(xt) and the ratio

Pxe)alxe))/(plxg)a(xg)) where p(xt)/p(xd) is determined by M.

ilence a'ma for for M=M', T(x¢)=T'(x¢) . In view of eq.(18) and the corresponding relation-
ship for the slightly modified ET¥ with M = M',T(xt) = T'(xt) we find

Xt -1 X
(s(x)/s(0))'/(s(x¢)/s(0))= 1 +(1+ § qz)az)™" Tar(z) - a(z))dz . (23)
Xq X4

Consider the case where the numerator and the denominater on the left-hand side of eq.
(23) refer to a cold run in the slightly modified ETW.and in the original ETW , respecti-
vely , M=M', p(xt) = p'(xt), T(xt) = T'(xt) . In this case the departure of q'(z) from
gz} in eq.(23) is solely due to the installation of n additional screens. The empirical
formula (cf. /6/)

-n
s'(0) = ( 1 + c(Re) ) s(0) , (24)

where the resistance coefficient of a single screen,c,is a function solely of Re for a gi-
ven W,M ,screen and tunnel geometry, does not hold for arbitrarily large n. Note that the
fine-mesh screens themselves generate fine-grained turbulence. The resistance coefficient
c tends to zero as Re —» @ with W and M fixed( cf. /9/ ). This statement and eq.{(24) su-
ggest that

s'(xg)/s(x¢) , s'(0)/s(0) *1 as Re—*>0Owith W , i , plxt) fixed =
in the case under consideration. Tn view of eqs. (23) and (25) we find

Xt Xt
( f (g'(z) - g(=z))dz)/(3 « f alz)dz) — 0 in the limit process (15) , (26)

+d x4
in the case under consideration. Hence, for sufficiently high Re, the right-hand side of
eq.(23) is close to 1 in the case under consideration. Combination of eq.(23) and eq.{24)
then leads to

-n/2
Tuv{xg) = 1 + el(Re) ) Tulxy) . (27)

Tu refers to a cold run at pressure p(xt), Mach number i1,temperature T(xt) in the original
ETW, Tu' refers to a cold run at p'(x¢)=p(xg) , M'=M » T'{x£)=T{xt) in the slightly modi-
fied ETW. Formula (27) formally holds for the KKK( cf. /5/ ). "Mean" in the sense of Fav—
re-averaged in the definition of Tu applies toc (27) for the ETW, in contrast "mean" in
the sense of unweighted ensemble-averaged in the definition of Tu applies to éhe correspo-
nding formula for the KKK. '
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CONCLUDING REMARKS
The present study suggests the following answers to the questions put in the in intro-
duction:

A. In view of the result (22): The departure of this ratio at a cold run at il,p{xt) from
the corresponding ratio at a run at normal temperature (and at the same M,p(x¢)) is sole-
ly due to the dependence of the product viscosity times sound speed upon the absolute tem-
perature.

B. The result (12) suggests two options of lowering the turbulence intensity in the test
section at a cold run below an adequate upper bound:
1. TLower s(0) accordingly by installing an adequate device of screens.

2. Reduce the nozzle-area ratio A(x¢)/A(xg) accordingly.

Table 1 shows the variation of r = Tu'(xt)/Tu(xt¢) for various n after eq.(27) for c(Re) =
0.68.

Wind tunnel test data, in the form of dimensionless force and moment coefficients, are
functions of a lengthy list of tunnel/model related parameters of various levels of impo-
rtance in terms of their influence on aerodynamic behaviour. A recent review /2/ of the
cryogenic wind tunnel focuses solely on the Reynolds number issue. The present study ill-
ustrates the concern over the Tu issue and then mowes towards its solution for the ETW.Fi-
nally, it is worth calling attention Lo the isgue ol model support influence /7/.
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