Twelfth Australasian Fluid Mechanics Conference
The Univessity of Sydney, Australia 1995

287

EFFECT OF RATE OF INCREASE OF THE INNER CYLINDER SPEED
ON SELECTION OF THE FINAL WAVELENGTH IN TAYLOR VORTEX FLOW

John Rigopoulos, Mark C. Thompson and John Sheridan

Department of Mechanical Engineering

Monash University

Clayton, Victoria
AUSTRALIA

ABSTRACT

A spectral numerical method was used to model
linear increases in inner cylinder Reynolds number
during a finite ramp time for Taylor vortex flow. The
outer cylinder was kept stationary. The annulus was
of infinite height and modelled using periodic bound-
ary conditions. The final Reynolds number was re-
stricted to a region close to the critical Reynolds num-
ber for the onset of Taylor vortex flow. How different
ramp times affects the growth in the amplitude of
the modes with time and the selection of the axial
wavelength at steady state was investigated. Longer
ramp times resulted in the amplitudes of the unpre-
ferred modes becoming less significant in comparison
with the amplitude of the preferred mode. For al-
most sudden increases in Reynolds number there was
an interplay between the different modes before one
eventually dominated in the development of the flow.

INTRODUCTION

Taylor vortex flow can develop in a fluid bounded
by two concentric rotating vertical cylinders. The
flow is axisymmetric, an example of which is shown in
Figure 3. An experimental investigation was under-
taken by Burkhalter and Koschmieder (1973), (1974)
for quasi-steady and sudden increases in inner cylin-
der Reynolds number, respectively. The authors’ re-
sults indicated that for a sudden increase in inner
cylinder Reynolds number ([Re;n) to a value above
but close to the critical Reynolds number for the onset
of Taylor vortices (Re,), the selected wavelength (};)
was generally less than the critical wavelength (the
wavelength A, derived from linear theory) and varied
as shown in Figure 1. However, it was found that A,
equaled A, for quasi-steady increases in Re;n. A nu-
merical investigation by Neitzel (1984) was conducted

for finite height annuli, rigid endwalls attached to and
moving with the inner cylinder, and sudden starts.
The author’s results showed close agreement with
the selected wavelengths determined by Burkhalter
and Koschmieder (1974) in a Reynolds number re-
gion close to the critical value for the onset of Taylor
vortices.

METHOD

The axisymmetric, incompressible Navier-Stokes
equation in cylindrical coordinates were solved nu-
merically using a Fourier-Chebyshev Spectral method
and with the use of operator splitting. We de-
fined Reynolds number in the same manner as Mar-
cus (1984). A Fourier approximation was made in
the axial direction with M points and a Cheby-
shev approximation was made in the radial direction
with N points. All derivatives were determined us-
ing a Fourier-Chebyshev derivative transform routine.
The non-linear (convection) step used a second-order
Adams-Bashforth approximation, an explicit scheme.
The velocity in the second fractional step was ad-
justed to make it divergence free. The pressure was
solved from a Poisson equation obtained by enforcing
the incompressibility constraint on the velocity at the
second fractional step. First-order Neumann pressure
boundary conditions were used, as described by Kar-
niadakis e? al. (1991). The viscous step used an im-
plicit approximation incorporating a weighting factor
#. For example, # = 0 corresponded to a Crank-
Nicholson approximation and @ = (.5 corresponded
to a Backward-Euler approximation. The viscous
step reduced to a Helmholtz equation for the velocity.
Both the Poisson and Helmholtz solvers were based
on a Fourier-Chebyshev Spectral Tau method. In the
Tau method the equation is solved in spectral space
first for the coefficients and then backtransformed to
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real space to get the pressure and velocity compo-
nent distributions. The Poisson equation and the
Helmholtz equation were arranged to have factors r
and r2 in front of the derivative terms. In spectral
space these factors had easily-derivable arrays which
were multiplied with the spectral form of the deriva-
tive terms. The 3M inversions of (N —2)x (N —2) ar-
rays needed only to be done once, in a pre-processing
step.

The code was checked for accuracy by comparing
the growth rates in the initial stage of exponential
growth of the vortices with results from other sources.
Results are shown in Table 1. The initial conditions
were circular Couette flow plus a small random per-
turbation. The referenced results in cases 1 and 3
come from Marcus (1984) and case 2 is from linear
theory. As can be seen, our growth rates agree to at
least three decimal places for the chosen numerical

parameters.
CASE 1 2 3
n 0.5 0.5 0.95
u 0 0.11765 0
Re;n 74.924 82.557 184.99
r 1.9877 2.0268 2.0087
At 0.05 0.05 0.5
M x N 16 x 17 | 16 x 17 | 16 x 17
6 0 0.5 0.1
Computed | 0.035649 | 0.000106 | 0.000003
Referenced | 0.035636 0.0 0.000516

TABLE 1: Comparison of growth rates. Radius ratio
(inner/outer) 7, angular velocity ratio (outer/inner)
i, aspect ratio (height of annulus) T'.

In our numerical simulations the Reynolds number
(Re) was increased linearly with time from an initial
Re; to a final Re; over a ramp time T, and then the
simulation was continued until steady state at the
value of Rey.

A high aspect ratio confirmation of this method
can be seen from the case n = 0.5, p = 0, Rey =
74.924, Re; = 60, I' = 19.877 with At = 0.25,
M =324, N = 33,8 =0, and T' = 40 revs (very
slow increases of Re). This gave the result A, =
1.9877. In other words, the selected wavelength in
this case is the critical wavelength, as expected for
quasi-steady ramps.

A variation of Re would normally require 2M of
the 3M matrix inversions described above to be done
at every time step. This would make the spectral
method too computationally time consuming. To
overcome this a variable time spacing was used while
Re was varied so that the ratio Re/At remained con-
stant. Then these 2M inversions were only needed to
be done once, as for the constant- Ke situation.

RESULTS
The following choice of parameter values were

mader n =0.727, =10, Rep = 116 67, Re; = 70,

and aspect ratio [' = 20.0286. These values were
selected so a comparison of the results of Burkhalter
and Koschmieder (1974) and Neitzel (1984) could be
made with selected wavelength. The numerical pa-
rameters were set to At = 0.25, M = 324, N = 33
and # = (. These values were decided upon after
a long series of runs where resolution requirements
in space and time were determined, for the case of
ramp time T = 2.98826 revs (inner cylinder rev-
olutions). Comparisons of maximum and minimum
azimuthal vorticity and the distance between succes-
sive extrema for different selections of the numerical
parameters were made to check that the same final
state was reached.

To investigate the effect of the rate of increase of
the inner cylinder speed on the computed wavelength
the steady state wavelengths were computed for dif-
ferent ramp times. A plot of computed wavelength
versus ramp time is shown in Figure 2 together with
points from Burkhalter and Koschmieder (1974), and
Neitzel (1984).

In Figure 3 we show a velocity vector plot for the
state A, = 1.821.

For different ramp times, the spectral amplitude
for each mode was studied at different times during
the development of the flow. Examples of these are
shown in Figure 4. The spectral amplitude Ap,(t),
where m specifies the axial mode, was taken as the
Fourier transform of the radial component of velocity
at the radial centre of the domain.

DISCUSSION

We compared our results with Burkhalter and
Koschmieder (1974) and Neitzel (1984) for selected
wavelength for sudden starts (77 = 0) and quasi-
steady increases (T sufficiently large). For T' <
0.0095 revs we obtained A, = 1.669 and for
0.00955 < T < 29.8826 revs we obtained A; =
1.821. This compared with A, = 1.75 for sudden
starts and A; = 2.0 for quasi-steady increases, by
the two authors. Our results were reasonable given
that in the vicinity of the selected wavelengths only
axial wavelengths of 1.541, 1.669, 1.821 and 2.003
could be selected. Also, the experimental results were
restricted to discrete values and had end conditions
which were different to ours.

Hence, Figure 2 indicates that the preferred wave-
length remains at the value 1.821 until RKe increases
in an almost stepwise fashion. Then the preferred
wavelength drops to the value 1.669 .

Figure 4 shows that although the jump from the
wavelengths 1.821 to 1.669 occurs for a particular
value of ramp time, the spectral amplitudes reveal
that for a decreased ramp time the unpreferred modes
become more significant in a continuous manner. In
particular, as the ramp time is decreased, the ampli-
tude of the 1.669 mode rises and concurrently the am-
plitude of the 1.821 mode drops, after the initial ex-



ponential growth region, as shown in Figures 4.1 and
4.2 . Eventually a steep enough ramp will make the
1.669 mode overtake and dominate the 1.821 mode,
as shown in Figure 4.3 . The 1.669 mode will grow to
a finite amplitude and the 1.821 will decay to zero.

Figure 4.2 highlights an intermediate situation
where the 1.669 mode overtakes the 1.821 mode but
the ramp time is short enough to keep the 1.669 mode
from eventually decaying to zero again, with the 1.821
mode eventually dominating.

Figure 4.3 also indicates for sudden starts that al-
though the amplitude of the 1.821 mode is greater
than the amplitude of the 1.669 mode in the initial
region of exponential growth, there is a time during
the development of the flow where the 1.669 mode
overtakes the 1.821 mode and becomes the selected
mode at steady state.

CONCLUSION

It has been shown by fixing the initial and final
Reynolds number and varying the speed of the ramp
between them that the selected wavelength at steady
state is affected by the rate of increase of the inner
cylinder speed. The fastest growing mode in the ini-
tial stage of exponential growth doesn’t always dom-
inate in the development of the flow and isn’t al-
ways the selected mode at steady state. For faster
increases in Fe;, the amplitudes of the unpreferred
modes become more significant in comparison with
the preferred mode. When a short enough ramp time
is applied there is interplay between the modes be-
fore one mode eventually dominates. The next stage
of this research will look at higher aspect ratio values
and focus on an understanding of the physical pro-
cess behind wavelength selection from a linear rate of
increase of inner cylinder speed.
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FIGURE 1: Ratio of Taylor number to critical Tay-
lor number versus selected wavelength for n = 0.727,
g = 0. Data from Burkhalter and Koschmieder
(1974). The circled points are for sudden starts. The
vertically straight line is for quasi-steady increases.

™~ +D -
@
= 1
@& 0 0 0 o
T B L o
E=
Z
z [x
X ¢
~ | 4
| © ® o
o | 4
a
-4 -2 a 2 4

LOG OF RAMP TIME (BASE 10)

FIGURE 2: Selected wavelength versus ramp time.
Time in units of inner cylinder revolutions. Our nu-
merical experiments (®).The discrete possible wave-
lengths in our numerical experiments in the vicin-
ity of the selected wavelengths (O). Burkhalter and
Koschmieder (1974), Neitzel (1984) (x). Burkhalter
and Koschmieder (1974) (+).



290

——— = o T - T
B e T B T B i S S N o S
e S SN S
..rrrT,"f/'/'/"/‘/v_—._.__,,ﬂ\‘\\\&u,_h_
| -
.I::TTTTTTT::‘-‘\HH““““ ° A=1821
& Y Sy g
SEITITI T 0 54 5. e g i fjfijil“
.’T?TTTTT“‘\\\-"’-"14“[1111“"
‘.MHH’\'\\\\,,,/![”“““ %
‘.zrﬂ‘\'\'\\'\\-\._,_,(({{‘”““ g-
AR N R S s e S s il "
L AR A A e i e g &
e e R R e e S g
w (S
S e A e e o e e e e e & gl
i TP Ol it LN | SO g
- e 2
s L S S R R %
..,.“J‘,‘,l_,_,,..._.-.-\\\'\\\\n... <
.,”ull‘,!{/,,.._-_\‘\\'\'\\1!(... s_
L e RN Tt o
e e LRI
col .Z'[t’“""\ Tt
- 1 ‘,,A\1‘\TTTTTT1T-.‘
wiulliiii o e r T T TTT T e
oo h bl s 7 £ T¥T =
i Ly \_’_._-)f/':’?T?TIn.. =}
HLLLL LAY AAAFPTTI T
O e S i
,,.H\\\\\‘\__’_.‘__,_,_M)/‘/‘}/i‘ur..
B R e o o c st ah AR
il S E = ; \ )
o 20 40 60
R AXIS TIME IN INNER CYLINDER REVOLUTIONS
FIGURE 3: Velocity vector plot of the FIGURE 4.2: A,, versus time for ramp time
As = 1.821 mode. T = 0.00955 revs.
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