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ABSTRACT

The advection and dispersion of solute in
groundwater systems can have a severe environmental
impact. In this paper, we consider steady, neutrally
buoyant solute transport through the saturated
region of a homogeneous hillslope aquifer. Analytic
series methods are used to obtain solutions for the
potential and stream functions, and hence the flow
field, on arbitrary seepage domains. The potential
and stream functions provide a natural orthogonal
curvilinear coordinate system for the solution of
the transport equation. In this coordinate system,
the transport equation for steady, isotropic diffusion
reduces to a Helmholtz equation, with constant
coefficients. An analytic series solution is obtained for
the transport equation, in the transformed domain.
These solutions are then transformed back to the
original seepage domain, and solutions are provided
for typical hillside seepage regions.

INTRODUCTION

In an environmentally conscious society, the
management and conservation of subsurface water
resources 1is extremely impertant. Effective
management policies depend on quantitative
knowledge of the transport processes in porous
media. In particular, knowledge of the advection
and diffusion of solutes through saturated aquifers
is of prime importance in a relatively dry country
like Australia, where groundwater is an essential
natural resource. Solute transport can occur when
the water table rises and mobilises salts in the newly
saturated zone. For example, increases in the water
table elevation can be caused by the removal of large
surface vegetation, followed by the introduction of
irrigated agriculture. More generally, contaminants
can be carried from any surface source, through the
vadose zone and across the water table, to then be
transported though the groundwater system.

Australia

In the saturated zone, the advective-diffusive
process is governed by two equations, namely the
flow equation and the transport equation. Accurate,
efficient solutions to the transport equation can be
notoriously difficult to obtain, even when accurate
solutions for the flow field are available.  This
situation is exacerbated by the large length to depth
ratios common to most aquifers. Analytical solutions
for the transport equation are readily available for
infinite and semi-infinite flow domains, when the
seepage velocity is constant (Bear, 1979; Hunt, 1983).
However, in practical applications aquifers are of
finite volume and irregular cross-section, and the
seepage velocities are typically far from uniform.

Recently, the classical series method has been
extended to cater for steady seepage problems,
defined on irregular flow domains (Read & Volker.
1993; Read, 1995). As a consequence, an analytic
solution can be obtained for the flow equation.
Thus the flow field can be accurately and efficiently
determined throughout the entire flow domain, and
attention can be focussed on solving the transport
equation. In addition to the potential solution @,
the conjugate stream function v is also immediately
available. The potential and stream functions
together form an orthogonal curvilinear coordinate
system, in which the flow field is uniform. Hence
the mass transport equation can be conformally
transformed to a uniform flow domain, using potential
and stream function coordinates.

In this paper, we provide analytic solutions for
steady, isotropic diffusion. First, analytic solutions
are obtained for the transport equation in the (o, W)
coordinate system, using analytic series methods.
This solution is then transformed back to the
original coordinate system, thus providing an analytic
solution for the transport equation in the original
seepage domain. [n the next section, a formal
mathematical description of the problem is given,
together with details of the transformation process.
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Figure 1. Schematic of the hillside seepage domain.

The series solution method is described next, followed
by some representative results. Finally, the method
and results are discussed.

PROBLEM FORMULATION

The two governing partial differential equations
are the flow equation and the transformed transport
equation. In order to formulate the problem
mathematically, we make the following assumptions.
First, the hillslope is homogeneous and isotropic, and
subject to constant recharge at a rate sufficient to
ensure the formation of a steady water table. Second,
the transport processes in the aquifer have stabilised,
so that any initial transients have decayed and steady
state conditions prevail. Third, the solute is advected
and diffused isotropically throughout the aquifer,
after transmission through the water table. Finally,
we assume that the solute is neutrally buoyant, so
that the flow equation can be solved independent of
the solute concentration. The governing equations
and boundary conditions are given next.

Flow Equation

A schematic of the flow domain is presented in
Figure 1. Seepage through porous media is governed
by Darcy’s law, and this reduces to Laplace’s equation
for the hydraulic head ¢(z,y), when the hydraulic
conductivity K is constant. In the saturated region
ABDEF (Fig. 1), the governing equation for the flow
field is

Vi4(z,y) = . (1)

On the impermeable boundaries AF, CE and
FE, the Darcian flux across the boundary is zero.
Along the bottom boundary y = f°(z), this condition
becomes
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Along the vertical side boundaries (at = = 0, s) the
zero normal flux condition reduces to

dd
[@] r=0,s =" (3)

The aquifer is subject to constant recharge r =
K R, which leads to the formation of a steady water

] = (2)
y=fb(z)

table BD, given by y = n(z). Denoting the upper
(saturated) flow boundary by y‘(z), then

ro={ 15 55

Along the soil surface AB, the hydraulic head is equal
to the elevation above an arbitrary datum. Denoting
the upper (saturated) flow boundary by y‘(z), this
boundary condition becomes:

¢'(z) = oz, ' ()] = ¥'(2) (5)

Another boundary condition applies, along the
water table BD. Mass flux across the water table
y = n(z) is conserved, and this reduces to

9y B y=n(z)

This equation can be linearised, by first invoking the
Cauchy-Riemann equations for the conjugate stream
function ®¥(z,y) (Read & Volker, 1993), and then
integrating with respect to z. Using the stream
function, the free boundary condition (6) becomes

dlz, n(z)] = R(s —z), (7)

where the arbitrary constant has been chosen so
that the stream function is zero on the impermeable
boundary AFEC.

The solution to the flow field can be obtained by
first solving Laplace’s equation (1) for the hydraulic
head, subject to the boundary conditions (2), (3), (5)
and (6) , in the context of a free boundary problem.
The fluid (or pore) velocities (u,v) in the z and y
directions are then given by

(u’v)= <_£%)_£'a—¢) ) (8)

where o is the (constant) porosity. Note that the
stream function #%(z,y) and piezometric gradients
[0¢(z,v)/z,0d(z,y)/y] are immediately available,
once an analytic solution for ¢(z,y) has been
determined.

Transport Equation

The steady, isotropic advective-dispersive
transport equation for the concentration C(z,y) of
solute in a (£, () coordinate system, aligned parallel
and perpendicular to the local direction of the
fluid flow (i.e., parallel and perpendicular to the
streamlines, in Figure 1), is given by (Hunt, 1983):

a ac d ac _aC
3—6- [DFE} + 'BE [D_B_E] = ua—E =0, (9)

where [} is the longitudinal and lateral diffusion
coefficient, and @ = +/u? + v? is the magnitude of
the pore velocity. Note that in the general case D is
not constant, and depends on .



In the (global) (z,y) coordinate system, the
transport equation becomes (Hunt, 1983):
a ac i) ac ac aC
— || = [ B — 2 — ==, (10
3:1:[ 3::] ay[ 3'y] “or Vay - (10

There will be no mass flux across the impermeable
boundaries AF, FE and EC (Figure 1). As the pore
velocity normal to an impermeable boundary is zero ,
the zero flux condition reduces to zero diffusion across
the boundary (Bear, 1979). Along the impermeable
base, the zero diffusion boundary condition becomes:

-2 [E_gﬁ] =0 (11)
/1+y2 By BI yufb(z)

On the vertical side boundaries (at z = 0, s) the zero
diffusion condition reduces to

[%] z2=0,s =S (12)

Along the seepage face and water table, the
concentration of solute is given by

C¥(z) = Clz,4'(z)] = h'(z), (13)

where h'(z) is the measured or estimated
concentration of solute.

Coordinate Transformation

In the (z,y) coordinate system, the isotropic
transport equation involves the advection terms
udC/dz and vdC/dy. These terms can be simplified,
by transforming to a global coordinate system that is
locally aligned to be parallel and perpendicular to the
direction of fluid flow. The coordinate system (¢, v)
satisfies this requirement and is related to the (z,y)
coordinate system by a conformal transformation.
The result is an orthogonal, curvilinear set of
coordinates with scale factors A1 = ha = @~ '. The
transport equation in these coordinates is (Bear, 1979
p. 246):

a aC 7] ac oC .
%[DEE]-F—GE[D%]—C}—QS‘ﬂU- (14)

Note that (after simplification) the coefficient of the
advection term in the transformed equation has been
reduced to one. Assuming constant diffusivity D, this
equation transforms to the Helmholtz equation

=y aC

AV C — aa_tjs = D, {15)
where @ = D™ and V? is the Laplacian operator, in
the (@, i) coordinate system.

The impermeable boundary AFEC (Fig. 1) in the
(z,y) coordinate system transforms to the abscissa
h =0, in the (¢,1) coordinate system. The side and
bottom boundary conditions (12) and (11) become

aC
[%] = 0. (16)
=0
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The top boundary y = y’(z) is transformed to ¥ =
$°(¢), in the (¢,%) coordinate system. The top
boundary condition (13) becomes

C'(¢) = Clg, ()] = h'(9), (17)

where R'($) is the concentration along the top
boundary ABD (Fig 1), transformed to the (¢,%)
coordinate system.

The upper boundary 9°(¢) in the transformed
domain can be determined pointwise, once an analytic
solution to the flow domain has been generated. This
boundary can then be represented using cubic splines
or some other suitable interpolant.

ANALYTIC SERIES SOLUTIONS
The governing differential equations (1) and (15)
for the flow field and mass transport respectively are
both variations of the Helmholtz equation. Assuming
homogeneous Neumann boundary conditions (at g =
0,s), a truncated analytic series solution for the
Helmholtz equation V2 f — adf/du = 0 is given by
N
flu,v) :ZA;r.un(u,v)+B.{vn{u,V) (18)
n=1

where

un(p, v) = cosh(ynv) exp(ap/2) cos(Anp), (19)
vn(p, v) = sinh(ynr) exp(apu/2) cos(Anu),  (20)
and vn = Vo? +4)3/2, An = (n — 1)x/s. Note

that f is replaced with ¢, o« 1s set to zero and
(p, ») becomes (z,y) for the flow equation, whereas
f is replaced with C and (g, v) becomes (¢, %) for
the transport equation. The series coefficients AL
andB{ are evaluated using the remaining boundary
conditions.

Flow Solution

Assuming an estimate of the water table location
is available, the free boundary problem is reduced
to a sequence of known boundary problems, by
iteratively improving the initial estimate. The
recharge condition (7) is used as a cost function,
to update the water table location at each step(full
details of the iterative procedure are given in (Read,
1995)). Hence, the solution depends on solving the
known boundary problem, at each step of the iterative
process.

The bottom boundary condition for the flow
equation can be expressed in terms of the series
solution as

N
D AZan(z) + Bioa(z) =0, (21)
n=1
where

g 1 dun . Oun

ui’.(x):,:,[a —d ] , (22)
\/1+y2 v * y=7%z)

) = ——e [aﬁ - ydﬁ] . (23)
T+ | 9 dz =Pl

Similarly, the potential condition along the upper
boundary can be represented as
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Figure 2. The transformed flow domain.
N
> Afui(z) + Blun(z) = y'(z), (24)
n=1

where u!,(z) = un[z,y(z)] and »*(z) = va[z,y'(z)].
The series coefficients A% and B? can be estimated,
using the principle of eigenfunction expansions,
applied to non-orthogonal basis functions (Read,
1995).

Transport Solution

The bottom boundary condition for the flow
equation can be satisfied exactly in the transformed
domain, as the bottom boundary is horizontal. Hence
the series solution for the transport equation becomes

N
Cl6, %) = Y Brvald, ¥), (25)

n=1

The top boundary rondition (17) can be expressed as
N
> Blvnl9) = h'(9), (26)
n=1

where vh(¢) = va[e,'(4)]. As noted previously,
the series coefficients BS can be estimated using
techniques based on the principle of eigenfunction
expansions.

RESULTS

The flow domain depicted in [Figure 1 has been
chosen to demonstrate the solution technique, as it
is typical of hillside seepage regions. The basal and
surface slopes are 5% combined with a length to depth
ratio (i.e., s) of 50:1. Recharge arrives at the soil
surface at a rate of R = 107%. A powerful feature of
the analytic series method is that exact bounds on the
truncation error are immediately available, and can
be determined by examining the boundary errors. For
the specified flow geometry, between 10 and 15 terms
in the series were sufficient to ensure that the root
mean square (rms) errors were = 107> — 10™*. Once
the potential solution has been generated, the stream
function is also available. In the (@, ¥) coordinate
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Figure 3. Concentration Solutions.

system, the flow region transforms to the domain
shown in Figure 2.

The transport equation can be solved in the (&, w)
system, once the diffusivity D and the concentration
profile along y‘(z) has been specified. In the general
case, [} is proportional to the velocity. Assuming
that the porosity is in the range 10% — 30%, and
the velocity is approximately constant, then 107" <
D < 1. However, solutions have been obtained
with diffusivity up to five orders of magnitude larger
than the upper bound, to demonstrate the relative
insensitivity of the solution to the value of D (Fig. 2).
Similarly, a variety of concentration profiles C*(z)
were chosen, each increasing from 0 at z = 0 to 1
along the upstream region of the water table (e.g.,
C*(z) = (z/s)™ where n = 1,2,3). Surprisingly, the
solutions to the transport equation for these different
concentration profiles and 10~" < D < 10° are almost
indistinguishable from one another, and the contours
of concentration are (approximately) aligned along
the equi-potentials.

CONCLUSIONS

The steady, isotropic advection-diffusion equation
has a simplified form in the (¢,%) cocrdinates.
The availability of an analytic solution to the flow
equation (via the analytic series method) means that
it is possible to do this transformation. Hence,
analytic solutions to the transport equation can also
be found, in the transformed domain. The solutions
presented in this paper are somewhat surprising, as
the influence of the diffusion term appears to be
negligible. This is possibly due to the large aspect
ratio of the flow domain. The authors are currently
investigating this question.
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