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ABSTRACT

An ABC-flow is a steady solution of the Navier-Stokes cquation with periodic boundary conditions and a corresponding
force. Three symmetric steady solutions different from the original one are found numerically for 20 < R < 200. Their
behaviour supports the hypothesis that this family of solutions persists for R — oo,

Steady solutions of the Navier-Stokes equation
v
ot

with the incompressibility condition ¥V - v = ( and periodic boundary conditions are investigated numerically in the interval
of Reynolds number K from 20 to 200. The ABC flow

=v><(V><v)—Vp+}—I%Av—i-}EE

uapc = (Asin kaz + C cos kry, Bsinkay + Acoskaz, Csinkzs + Bcos kz;)

is a steady solution of the equation for the selected force F = k2u . The present study is restricted to the case
A=B=C=1,k=1.

As a solution of the Navier-Stokes equation u 4 g¢: becomes lincarly unstable at I 22 13.05 [Galloway & Frisch 1987].
As R grows from 13 to 50 the time-dependent solution undergoes 11 bifurcations [Podvigina (Zheligovsky) & Pouquet
1993,1994] resulting in an increasing complexity of the flow. The computations at 13 < R < 25 revealed existence of three
steady solutions different from 14 p¢. These steady solulions are mutually symmelric, the symmetries arising due to the
symmetries admitted by the 1:1:1 ABC-force. They loose linear stability at R a2 14.0 via the Hopf bifurcation.

Together with the original ABC-flow these soiutions play the most important rdle in the dynamics of the system. At
R > 14.7 a time-dependent flow experiences chaolic jumps between u 4 ¢ and the secondary steady flows, with one steady
flow involved in any typical evolution at 14.7 < IR < 18, and with all the ihree visited within an individual evolution at
20 < R < 25. The temporal record of the cnergy during the evolution consists of plateaux corresponding to the steady
solutions separated by intervals of noisy behaviour. As [2 grows the plateaux become shorter - from 2000 turnover times at
R = 15 w total disappearance; the noisy phases’ lengths increase. At [2 = 30 the temporal behaviour becomes completely
unstructured.

The significant rdle of the steady solutions in the dynamics of the hydrodynamic system, on one hand, and the fact that
their mere existence at large Reynolds numbers is questionable [Amold, 1992], on the other, makes them an important object
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Figure 1. The energy spectra of the solutions at /2 = 70 (solid line) and R = 200 (dotted line).
Horisontal axis: wavenumber K, vertical axis: g <ij<k+1|Vi|*.

to study. In the present research we establish numerically the presence of the secondary solutions at 20 < R < 200 and
investigate their properties.

The steady solutions were obtained for 20 < R < 100 step 10 and for 100 < R < 200 step 20 by a new specially
designed numerical method [Podvigina & Zheligovsky, 1995]. The pseudospectral method was applied, with the solutions
represented as Fourier series

= Z L
k

Computations were made with the resolution 32 Fourier harmonics for R < 70 and 64 at higher R. The energy spectra
of the solutions at & = 70 and 200 are represented on Figure 1 showing that the resolution is adequate.

Present results support the hypothesis that the considered family of the steady solutions exists at large F.

The new steady solution (speaking about one in the family of three) is close to an ABC-flow with A = C' # B and
A, B and C depending on R. The discrepancy between the steady solution and the ABC-flow is at least by two orders of
magnitude smaller in energy than the flows themselves. Figure 2 illustrates the behaviour of the components of the solution
with the unit wavevector. The wavevector 1 components of any periodic solenoidal field admitting the symmetries of the
steady flow under consideration can be represented as a sum of an ABC flow u4g¢ with k = 1 and A = C and of an ABC
flow ugrgier with k = —1, A’ = —C’ and B’ = 0. Figure 2 shows the behaviour of Im(vtl,,o,_l) = (A - A)/2,
Re(vd 5 ,) = (A + A’)/2and Re(v} ; o) = (B + B’)/2. Thus Figure 2 confirms that the wavevector 1 component of
the solution is close to an ABC flow ugpc with & = 1 and A = C. However, it also shows that at large Reynolds numbers
Re(vd o 1)—Im(v§ 9, 1) = A’ does not tend to zero, and hence the solution does not tend to the ABC flow.

The Fourier coefficients are changing significantly at the interval 20 < R < 70, but practically do not display considerable
variation when the Reynolds number grows further up to 12 = 200.

Figure 3 represents Im(v?‘l.ﬂ). Rc(v'f’l’o) and ].m(vl_ll_l}_l) (these coefficients vanish in any ABC-flow). As the
Reynolds number grows the first two of them decrease monotonously (at R = 200 they are by an order of magnitude smaller
than at R = 20). The behaviour of Im(v1, _; _,) is more complicated; if it tends to a limit when R — co, this limit is
supposedly non-zero.

The steady solutions are currently being computed at higher Reynolds numbers. The results will provide more information
on existence and the limit behaviour of the Fourier cocfficients of the solutions and will hopefully enable to construct an
analytical asymptotic decomposition for large .
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Figure 2. Wavevector 1 components of the steady flows. Horisontal axis: Reynolds number.
Vertical axis: Im(vg o _, ) (solid line), Re(v§ g ;) (dotted line), Re(v3 ;) (dashed line).
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Figure 3. Components of the steady flows. Horisontal axis: Reynolds number.
Vertical axis: Re(taf.l'o) (solid line), Im( ”113,1,0) (dotted line), Im(‘vl_]'_ll_l) (dashed line).
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