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ABSTRACT

The effect of surface tension on the geometry of the
cavity and free-surface jet is studied in detail. The life-
cycle and centroid movement of the cavity plus the
maximum height to which the free surface jet rises is
found to be strongly dependent on the surface tension. The
entire computation, based on the master/slave model, were
done on a distributed computing environment using the
Parallel Virtual Machine (PVM) software.

INTRODUCTION

Over the past few decades there has been considerable
effort put into the numerical study of growth and collapse
of cavities (or bubbles) under various restrictions. The
behaviour of a single bubble throughout a single cycle of
expansion and collapse is of common interest to all the
different types of fields : cavitation, underwater signaling,
underwater-weapon design, chemical processing, medicine
and nuclear physics. Most of the workers (Lundgren &
Mansour (1991);, Zhang et al (1993), Wang et al (1994))
have studied the case of single bubble and very few
investigations has been done on multiple bubbles. In this
paper we present a new approach for solving
(axisymmetric) bubble dynamics problems on the state-of-
the-art distributed computing environment: Parallel
Virtual Machine (PVM). The effects of surface tension is
also studied in detail.

MATHEMATICAL FORMULATION

The boundary-integral method has become the
principal numerical technique used for solving bubble
dynamics problems because of the ease with which it can
follow the contortions of the bubble shape, and is adopted
here. The flow is assumed to be incompressible,
irrolational inviscid and axisymmetric (Figure 1); and
satisfies the Laplace equation, V2¢t = 0 where ¢ is
the velocity potential. The application of the Green’s
theorem allows one to write the solution of the Laplace
equation in the domain Q as
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The point p is somewhere in the flow domain and 8/én =n
e V is the normal derivative at the boundary. G{p,q) = |
p-q |  is the Green’s function due to a unit source in an
infinite fluid domain.The dynamic boundary conditions
comes from the consideration of the Bernoulli equation
and the normalised form is given by
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where § = .‘/ pER [ Ap s termed the buoyancy force
parameter, ¥ = h / Ry ( h being the initial inception depth)
Rmdp

o
the surface tension. 1/R; and 1/R; are the non-
dimensional principal curvatures of the surface and Ry, is
the maximum radius the bubble would reach in an infinite
medium (Rayleigh bubble). In terms of potential, the
movement of a material on the boundary follows

and 7 is defined as 7 = to measure the effect of

dx
d_ = V¢ where x is defined as the spatial vector
t

coordinates of a material point on the surface.

The surface of the bubble and the free surface are
discretised as a set of N linear segments S;, each of which
is locally parameterised by £ in the range [0,1]. The
integral equation (1) can be expressed in discretised form
as

N
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where y(£) = 8¢/dn, and K, , K3 are the kernel functions in
terms of the elliptic integrals of the first and second kinds.
derived from the integration of the Green’s function
G(p,q) and its normal derivative 8G/on in the azimuthal
direction.
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DISTRIBUTED COMPUTING : PARALLEL
VIRTUAL MACHINE (PVM)

Parallel processing can be defined as the method of
having many small tasks collectively solving one large
problem. Parallel processing is basically a consequence of
the demand for higher performance, lower cost and
sustained productivity. A distributed computing system is
different from a parallel computing system in that the
processors in the former are physically far apart and
connected by a network. As more and more organizations
have high-speed local area networks interconnecting many
general-purpose workstations (called a workstation farm),
the combined computational resources may exceed the
power of a single high-performance computer. A key
concept in PVM is that it makes a heterogeneous
collection of computers appear as one large virtual
machine, hence its name. The PVM system is composed of
two parts : first part is a daemon (called pvmd3 or pvmd)
that resides on all the computers making up the virtual
machine; second part is a library of PVM interface
routines (in C and Fortran77). The PVM supports either
or a mixture of programming paradigms, viz. Single
Instruction Multiple Data (SIMD), or Multiple Instruction
Multiple Data (MIMD). For good efficiency. the task
granularity must be fairly large (each granule is a program
component that forms a part of the global computational
task). In this paper message-passing model is
implemented through a master/slave programming style (a
sample is given in Appendix A), where the master
program, residing on one machine, controls the flow of the
computation, farms out the calculations to the slave
workers, and collect the results from the farm as they are
available. The algorithm performance is usually analysed
by means of two measures : speed-up and efficiency
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respectively, where p is the number of processors, n is the
problem size and T is the total wall time taken.

RESULTS AND DISCUSSION

Surface Tension : It has been shown, both
experimentally as well as analytically, that an initially
spherical bubble will evolve towards a toroidal shape
because of buoyancy forces. As the bubble begins to rise,
the vortex sheet which develops at the surface has a sense
of rotation which induces motion of a tongue of liquid
(penetration jet). The direction and the point on the
surface at which this penetration starts to develop strongly
depends on its initial distance from the free-surface.
When the penetration jet impinges on the opposité surface,
the topology changes completely. The final topology also
depends quite strongly on the strength of surface tension.
The physics of the process beyond the contact is very
complex and our present code fails. The contact may be
made at a single or multiple points, depending strongly on
the two factors mentioned above.

As compared to the case of without surface tension,
the basic effect of adding the surface tension will be its
strong tendency to eliminate any sharp edges in the
geometry of the free-surface and bubble-surface.
Consequently, the jet broadens with increasing surface
tension value (Figure 2) and gives a more realistic
simulation as compared to zero surface tension case. With
the addition of surface tension, as shown in Figure 3a, the
bubble has a shorter life cycle and the maximum size of
the bubble reduces. When the surface tension is increased
the bubble rises to a lesser height towards the free-surface
and moves away at a much higher rate (Figure 3b). Based
on the Kelvin-impulse theory, The direction of the jet and
the bubble migration (centroid motion), depends on a
particular value of y8 ( see Wang ef al). The maximum
height to which the free-surface jet shoots from the datum
also reduces with increasing surface tension. Similar to the
bubble penetration jet, the free-surface jet broadens with
increasing surface tension. A typical situation of this is
depicted in Figure 4 for two different values of surface
tension, keeping all the other parameters same. The
surface tension is seen to pull the free-surface jet inwards
near its uppermost point producing a ring geometry
(necking effect) with high curvature which will eventually
result in the breaking off of a drop . The other effect of
surface tension is also seen by the concurrent formation of
another ring geometry with high curvature at the ‘corner’
where the horizontal free-surface slowly transforms into
the vertical jet. The pathline studies of the fluid particles
(Cerone & Blake (1984), Taib (1985)) has showed that, as
the initially horizontal free-surface transforms into a
vertical jet, the fluid is drawn from the region of low
curvature and accelerated into region of high curvature
(ring) and then upwards into the vertical jet. This
phenomena occurs at such high speed and Boulton-Stone
& Blake (1993) proposed that such flows are potentially
lethal to the cells in a bioreactor, which may be stretched
and ruptured by the high strain rates.

Computational Aspects : The timings (wall time) for a
fixed number of cycles is compared with increasing
number of processors. The speed-up, defined by the ratio
of the wall time for one processor to p processors, and the
efliciency of the algorithm is displayed in Table 1.

P Wall Time 5, E,

1 2500 1.00 1.00

3 1057 2365 0.788
5 899 2.781 0.556
8 704 3.551 0.444

Table 1 : The efficiency and speed-up with different
number of processors. Wall time is in seconds.

The problem is solved on a farm of DEC-Alpha 3000
workstations using the master-slave algorithm for best
load-balancing. The efficiency is good for low number of
machines and somewhat deviate very much from perfect



scaling for higher number, simply due to Amdahl’s law
which places an upper bound on the available speed-up;
in other words, major part of the source-code computes
serially (inherent). Nevertheless, the speed-up show that
the resources (the available computer power or facility)
are utilised more efficiently and shorter computing time is
required.
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APPENDIX A

Master Program
enrol master program in PVM
start-up any number of slave program in the PVM
read input data (r, z, ¢, t)
broadcast (send) data to all
slave programs =INPUTDATA
set node id to zero (nodeid = 0)
do while (slaves are working or nodeid < npoints)
if (nodeid < npoints) then
do (for each slave program)
if (slave is idle) then
nodeid = nodeid + 1
send the nodeid to the
idle slave to compute
solution for the node

point (=nodeid) =  ACTIVENODE
endif
if (nodeid = npoints) break

enddo

wait here for a result from a slave program
endif
enddo while
terminate all slave programs
collapsed) = FINISIIUP
leave PVM
terminate the program

(when bubble has
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Slave Program
enrol slave program in PVM

do (forever)

wait for a message form the

master program

case :
INPUTDATA
get the broadcasted data from
the master program

break

ACTIVENODE
get the nodeid
do calculations (solving
equation (5)) for node nodeid.
return solution of nodeid to
master program

break
FINISHUP
leave PVM
leave the program
break
endcase
enddo
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Figure 1 : Geometry and coordinate system for the
growth and collapse of a cavitaon bubble near free
surface.
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Figure 3 : (a) The life cycle, and (b) the centroid motion
of the bubble with increasing surface tension.
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