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ABSTRACT

This paper examines the motion of a two-layer viscous
fluid past a circular cylinder relative to a rotating fraine,
under the Boussinesq approximation. Of particular
interest is the motion in the boundary layers close to the
cylinder in each layer, including the separation of these
boundary layers from the surface.

INTRODUCTION

The motion of a homogeneous fluid past an obstacle in
a rotating frame has often been used as a prototype to
examine the effect of Coriolis forces on large-scale
geophysical flows past obstacles, such as isolated islands.
This approach led to a series of experimental studies by
Boyer and his colleagues (for example, Boyer 1970,
Boyer & Davies 1982) which have identified some of the
special features of this flow, one of which is a reduced
tendency of the boundary layer to separate from the
obstacle. While it could be argued that some of the
features of these flows are different from those observed
in the oceans, in particular the suppression of separation
due to influence of the Ekman layers, it is nonetheless
important to understand the origin of the features in the
experiments and this had led to a series of theoretical and
numerical studies of flow past obstacles in a rotating
frame. Among these have been the studies by Barcilon
(1970), Walker & Stewartson (1972), Merkine & Solan
(1979), Matsuura & Yamagata (1986), Page (1987),
Becker (1991) and Page & Duck (1993). All of these
papers have concentrated on the influence that the thin
viscous boundary layers on the surface of a circular
cylindrical obstacle can have on the overall flow field as
the Rossby number Ro is increased, particularly the
suppression of separation for Ro < E¥ when E << 1,
where E is the Ekman number. Some disadvantages with
this approach, which contribute to why it does not always
model geophysical flows very effectively, are that the
occans and atmospherc are actually density stratified
rather than homogeneous, and that their motion is

generally vertically sheared, rather than being constrained
to be two dimensional as in a homogeneous rotating fluid.
In practice, the additional effects due to these two
properties can often overwhelm those due to the earth’s
rotation alone.

In this study, we extend the previous studies in a
homogeneous fluid by considering the flow past obstacles
in a two-layer fluid, which is a common prototype in
theoretical studies on the effects of both density
stratification and vertical shear in the flow (see, for
example, Gill 1982). A similar study was performed by
Brevdo & Merkine (1985), who examined the flow for
zero Froude number F by calculating numerical solutions
of the boundary-layer equations, under the assumption
that the flow was not separated. Such an approach would
be acceptable if the aim was to examine only the
unseparated flow, but otherwise it fails due to the
distortion of the outer potential-flow solution by the
separated boundary layer. A better approach to the
problem would be to follow that used by Page (1987) for
the homogeneous rotating flow, which was based on
Smith's (1985) study of the corresponding non-rotating
problem, where the form of the separated potential flow
is sought. However, it turns out that there is no simple
way to extend that technique to a two-layer fluid, and so
this paper uses some of the numerical calculations by
Blanchonette (1995) for F = 0 to re-examine some of
Brevdo & Merkine's conclusions.

THE GOVERNING EQUATIONS

Consider two layers of viscous fluid, of densities p,”,
p2 and kinematic viscosities v;”, v2", which have uniform
velocities U;", Us" and depths d;", dy far from a cylinder
of radius {*, as shown in Figure 1. The fluid is contained
between two plates which arc a distance d” = d;"+ ds"
apart and the entire configuration rotating with a uniform
angular velocity Q about an axis aligned with the
cylinder. For a Boussinesq fluid the densities in each
layer p;' and p;” are taken to be approximately equal,
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Figure 1 The two-layer flow configuration

with Ap” = (p;” — pz) > 0 due to stability considerations,
and for simplicity we assume in this paper that v;” = v,
and d;° = d5, although these are not crucial to the
analysis or form of the results.

Scaling all velocities by the average far-field velocity
U = Y (U +U,"), all lengths by the cylinder radius ",
and time by the inverse rotation rate 1/Q° we can define
three non-dimensional dynamical parameters

Ro=U"IQT (Rossby number)
E =v'1Q'd? (Ekman number)
F =4p, Q%% 1g"Ap"d’ (Froude number)
with geometrical parameters d = d'/I" and d; = dp = d/2.
As for the one-layer flow in Page (1987), we assume here
that Ro and E are both small, and in particular that Ro is
O(E™) for E << 1 and that F is O( 1). Under these

conditions it is appropriate to introduce the two scaled
nondimensional parameters

A=Ro/2E"” and & =d(%E")? << 1
which measure the relative size of nonlinear effects in
comparison to Ekman-layer suction effects, and the scale

thickness of the boundary layer, respectively. In terms of
these parameters, the equations governing the flow are

3T aT, aT, 1 292
> +A(u, P +v, 2 )=y =361)+8°V5,
and
aT Jd T aT, 1
3!2 +A(u, a; +vy ay2)="2‘(§1 —35,)+8%Vjg,

(Blanchonettte, 1995), where ¢ is scaled relative to the
usual Ekman spin-up timescale. Here {; = V2, is the
vorticity in layer i, in terms of the stream function y; with
u, :—% and v.zﬁ,
& dy bo9x
and T is the potential vorticity, given in each layer by
1 = §r = 2F(v — y2) = Vit — 2F(y1 — )
and
T2 = G2 + 2F(ws — w2) = Vilyz + 2F(y1 — o).
The two evolutionary equations for T; above describe
changes in the potential vorticity following each fluid
particle, both due to vortex-stretching from ‘Ekman-layer
suction’ and through horizontal viscous diffusion:

Given the values of both I'; and T; at any time,
obtained from solving the potential vorticity equations,
the corresponding values of the stream function can be
obtained by subtracting the definitions above for I'; and
I'2 to give an elliptic equation for (\y; — yz). Solving this
gives the value of (y; — y3) everywhere, which can then
be substituted into, say, the definition for T to give a
Poisson equation for ;. Having solved for (y; — ) and
\/; everywhere, the values of y; follow immediately.

Note that this formulation accounts for a scaled
interface displacement of | = Y4 Ro F d (Y — W2), when
displacements due to rotation effects are relatively small,
which is valid provided Ap™/p” << Ro << I.

The boundary conditions on the flow are that the stream
function in each layer matches onto the appropriate
uniform flow at infinity, so that y; ~ -U; yand §; — O as
r — oo, and that both v; and d; /0r are zeroon r = 1.

NUMERICAL METHOD

As described in detail in Blanchonette (1995), the
numerical technique used in this study is based on
centred finite-difference approximations to the equations
above on a conformally-transformed and stretched spatial
grid. The parabolic equations for the potential vorticity
I'i in each layer were solved using a ADI approach, with
iterative correction of the velocities in the advective terms
at each time step. The coupled elliptic equations for vy,
were solved using the ‘mgd9v’ multigrid routine
described in de Zeeuw, (1990). The no-slip boundary
conditions on the cylinder were implemented through a
boundary condition on the vorticity, using a similar
method to that used by Becker (1991), which is in turn
was based upon a modified form of that in Israeli (1972).

RESULTS

As an illustration of the overall flow in both layers,
plots of the vorticity { and stream function W are shown
in Figure 2 for F = 0 and when the scaled velocities of
the upper and lower layers are U; = 0.2 and U; = 1.8
respectively. As for the equivalent one-layer flow, it is
the effective value of A in each layer, namely AU;, which
determines whether separation occurs, although clearly
the slower layer is partly ‘driven’ by an interaction with
the faster layer, through the ‘Ekman-layer suction’ terms
in the potential vorticity equations. This is most evident
in lower-layer stream function plots shown in Figure 2,
where there is a large separated region beneath the region
where the upper-layer boundary layer has separated from
the cylinder (as evidenced by the vorticity (z). If there
was no interaction between the layers then we would
expect the separated region in the lower layer to be
significantly smaller, based on AU; = 0.8 being only
slightly greater than the critical value of 0.5 for
separation to occur in a single-layer model.

Of particular interest in an analysis of the numerical
results is the variation in the location of the separation
point as a function of A for various vertical shears. Prior
to this, however, we need to decide how to define the
separation point in the context of the numerical
calculations because the classical definition, namely the
point where the flow direction near the surface reverses
(and tangential shear stress vanishes), is not necessarily
the most appropriate choice when the boundary-layer
thickness 8 is nonzero.

An alternative definition of the separation point, based
partly on Smith’s (1985) analysis of the non-rotating
flow, is that it is the position where the tangential
pressure gradient changes sign. This definition also has a
geometrical interpretation because for a stationary surface
it is the point where the normal vorticity gradient
vanishes, as would occur when a separating boundary
layer leaves tangentially from the surface of the cylinder.
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Figure 2 Contour plots of the vorticity £ (left) and streamfunction y (right) in the upper and lower layers
forh=4,8=0.14and F=0, when U, =0.2and U, = 1.8.
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Figure 3 The location of the separation point in the upper (x) and (+) lower layers as a function of A
using (a) the pressure-gradient definition (b) the classical shear-stress definition.

To illustrate the difference in the location of the
separation point according to these two definitions,
Figure 3 shows their variation in each layer for various
values of A, obtained from the numerical calculations of
Blanchonette (1995) using the same shear velocities and
boundary-layer thickness as in Figure 2. Clearly, the two
points do not coincide at finite Reynolds numbers A/&?,
although it could be argued that they appear to approach
cach other as A increases, which is consistent with their
coincidence for a non-rotating flow as Re — o=,

Note that neither of these definitions of the separation
point necessarily correspond with that used by Brevdo &
Merkine, who identified the separation point as the
position where their numerical calculations for the
boundary-layer flow ‘break down' when they are solved
by marching around the cylinder from the forward
stagnation point. In fact, this breakdown only occurs
because the specified tangential pressure gradient in the
boundary-layer calculations does not allow for the

distortion of the outer inviscid flow by the separating
boundary layer, so their ‘separation point’ does not
necessarily relate in any way to the place where the
boundary-layer flow actually separates. In a non-rotating
flow, for example, these points are in different locations.

In a one-layer rotating flow the separation of the
boundary layer is not necessarily accompanied by a region
of reversed flow (Becker, 1991), but it is also true that
reversed flow in the boundary layer does not necessarily
imply that separation has occurred. For example, Brevdo
& Merkine demonstrate that when (Us — U;) > V2 the
boundary layer in the lower layer has reversed flow
adjacent to the cylinder, even for A = 0 when the usual
type of separation would not occur. This example clearly
emphasizes the difference between separation and the
presence of reversed flow in the boundary layer. In this
problem, separation tends to be driven by the flow in the
layer with the larger far-field velocity U;, and hence the
larger effective value of A.
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Figure 4 Tangential velocity profiles near the cylinder in each layer, plotted at 120° from the forward

stagnation point, for U, = 0.2, U,

Despite the limitations of the method used by Brevdo &
Merkine when the flow has separated, and also that the
numerical calculations of Blanchonette (1995) were
performed for a small but finite boundary-layer thickness
& rather than in the limit as & — 0, the numerical results
from both studies are surprisingly similar under some
circumstances. As an illustration of this, the tangential
velocity profiles at an angle of 120° from the forward
stagnation point in each layer are shown in Figure 4 here,
corresponding to plots in Figure 8 in Brevdo & Merkine.
At this position the upper-layer flow is still attached and
it is likely that the small region of reversed flow in the
lower layer would have a relatively small effect on the
calculations for the much faster upper layer. Also, the
separation of the flow in the upper layer would not be
expected until further around the cylinder and hence there
would probably be only a small distortion of the outer
flow, so that Brevdo & Merkine’s assumed potential flow
forcing may be reasonably accurate in this case.

DISCUSSION

Despite some similarities between the boundary-layer
flow described by Brevdo & Merkine (1985) and that in
the numerical results both here and in Blanchonette
(1995), the former are inappropriate once the flow in the
upper layer has separated because they are based on an
incorrect boundary-layer forcing.

Blanchonette (1995) has demonstrated that many of the
features of the flows here are also apparent for a non-zero
Froude numbers, although in that case the slope in the
interface between the layers introduces some additional
effects which are related to one-layer flow on a  plane.

Foster (1989) examined a related flow in a linearly
stratified fluid, for which the cylinder does not extend
throughout the full depth of the fluid, and he notes that
the Ro F/E' is an important parameter combination in
that case. In a future study the effect of this parameter
will be cxamined for low-Rossby number rotating flow
past a cylinder in a lincarly-stratified fluid.
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