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ABSTRACT

The use of finite element spatial approximations
to the time-dependent Navier-Stokes equations leads
to the solution of one or more matrix-vector sys-
tems of linear equations per time step. The solu-
tion of some of these systems can be reduced to triv-
ial vector-vector multiplications by reducing system
mass matrices to diagonal form, thus achieving sig-
nificant economies. The sizes of the errors introduced
by employing diagonal mass matrices are examined by
comparison to an exact solution of the Navier-Stokes
equations.

INTRODUCTION

The Galerkin finite element method of discretising
the time—-dependent Navier—Stokes equations is an at-
tractive method when the solution domain is irregular
and cannot be conveniently mapped to a rectangular
grid. Generally the method requires the solution of a
set of equations of the form

(M) =[K]u+f (1)

at each time step. The mass matrix [M] is not diag-
onal and may lack structure. The cost of solving the
resulting system provides an incentive for reducing
the consistent mass matrix to diagonal form, thereby
reducing the solution procedure in equation (1) to a
vector—vector multiplication. Various methods can
be used to perform the diagonalisation (Zienkiewicz
& Taylor 1991), but all of them incur some numerical
error compared to using the consistent mass matrix.

The most common method employed for diagonal-
isation of [M1is known as row sum lumping, whereby
the diagonal term in each row of the lumped matrix is
the sum of all of the terms in the row of the consistent
matrix:

n
M]umped;, = E Mconsistent:‘_y- (2)

=1

Another means of forming a diagonal mass matrix
is to use Gauss-Lobatto-Legendre (GLL) quadra-
ture in the calculation of the mass matrix (see e.g.
Hughes 1987). Due to the location of the quadrature
points at the element nodes, this integration method
automatically generates diagonal element mass ma-
trices.

The effects of mass lumping in finite element dis-
cretisations has been studied by Gresho, Lee & Sani
(1978), but their study was restricted to advection
and advection/diffusion problems, and low element
orders. For advection they found that the use of mass
lumping in conjunction with 8-noded (serendipity)
quadratic elements led to solutions of lower accuracy
than the use of the consisten! mass matrix in conjunc-
tion with 4-noded linear elements. When mass lump-
ing was used with a nine-noded Lagrange quadratic
element to solve an advection problem, the accuracy
obtained was almost the same as that obtained with
linear basis functions using the consistent mass ma-
trix and the same total number of nodes. They did
not test the Lagrange quadratic element for solutions
of advection-diffusion problems.

In this paper, we examine the loss of solution ac-
curacy associated with mass lumping when applied
to a two—dimensional finite element discretisation of
the incompressible Navier-Stokes. The effect of mass
lumping on solution accuracy is examined for three
different element families. Errors are compared with
reference to an exact solution of the Navier-Stokes
equations. Row-sum lumping and GLL quadrature
are compared.

NUMERICAL METHOD

Fractional step method

The time integration scheme used is a fractional
step method, which has been widely used with finite
difference methods (Chorin 1968) as well as finite el-
ement methods (Comini & DelGuidice 1972). The
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scheme is first order accurate in time. An interme-
diate velocity field is calculated, without the effect
of pressure being applied. The pressure field is then
derived from a pressure Poisson equation, and then
finally the velocity is updated by applying the new
pressure field:
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Discretisation by the finite element method, using
linear, quadratic, or cubic Lagrange elements, leads
to the following steps:

u* —u” 1n
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Lumping [M] to produce a diagonal matrix leads
to significant saving of computations in solving equa-
tions (6) and (8).

Element Families

Linear—velocity /constant—pressure elements,
quadratic—velocity/linear-pressure  elements, and
cubic—velocity /quadratic-pressure element families
were tested. All elements were quadrilaterals of
uniform size. The use of lower interpolation order
for pressure eliminates the checkerboard pressure
mode that can occur when elements with equal
interpolation orders are used for both velocity
and pressure fields (Sani, Gresho, Lee, Griffiths &
Engleman 1981). Figure 1 shows the location of the
velocity and pressure nodes for the three element
families.
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Figure 1: ELEMENT FAMILIES.

TEST PROBLEM
The test problem was an exact solution of the

Navier-Stokes equations first published by Taylor
(1923) (see also Chorin 1968). The solution domain
is the square —7 < z; < m, i = 1,2. The boundary
conditions are

U3 = — Cos z1 sin zz exp(—2t),

uz = —sin £ cos 22 exp(—2t) (9)
with initial conditions

%] = — COS T Sin T2, w4y = — Sin T COS T (10)
and an exact solution

wy = — cos %1 sin £z exp(—2t),

uz = —sin T cos 52 exp(—2t)
1
p= -Rez (cos 221 + cos 2z2) exp(—4t). (11)

The Reynolds number (Re) was set to 100 for all the
tests presented here. Figure 2 shows pressure con-
tours and velocity vectors/streamlines for the exact
solution.
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Figure 2: PRESSURE CONTOURS (a) AND VELOC-
ITY VECTOR FIELD AND STREAMLINES (4) FOR
THE TEST PROBLEM.



ERROR CALCULATIONS

Numerical values for the L, error norm and
Sobolev—1 (h1) error norm for the velocity field were
calculated by interpolating the solution onto a fine
mesh, and then integrating numerically.

Elements

L= Y [fn(u,—ti.')(u.'—tf;)dﬂ (12)

Elements
h® = Z [/ﬂ(ue—ﬁ")(ui—ﬁs)

Huiy — i)y —4i,y)dQ],  (13)

where i is the exact solution.

For smooth problems the rate of spatial conver-
gence is given by O(k+ 1 —m), where k is the degree
of complete polynomial in the element shape function,
and m is 0 for the L2 norm and 1 for the h; norm
{Hughes 1987). For example, for quadratic-velocity
elements, the expected rate of spatial convergence is
O(3) in the Lz norm and O(2) in the k; norm.

CONVERGENCE PROPERTIES FOR
QUADRATIC-VELOCITY/LINEAR-PRESSURE
ELEMENT

The quadratic—velocity /linear-pressure element
family was used for investigation into the spatial con-
vergence properties of the method, with the results
presented in Table 1 and Figure 3. In each case,
1000 time steps were used to obtain a solution. A
small time step, At = 1 x 107°, was chosen to en-
sure spatial discretisation errors dominated temporal
discretisation errors for these tests.

Table 1: MESH RESOLUTION ERRORS FOR
QUADRATIC-VELOCITY/LINEAR-PRESSURE  ELE-
MENTS.

Elements Mass Lo h
Matrix

20 x 20 | consistent [ 1.17 x 10~—° | 2.44 x 10—2
25 x 25 | consistent | 5.85 x 10~% | 1.52 x 10—2
30 x 30 | consistent | 3.34 x 10~% | 1.04 x 10—2
35 x 35 | consistent | 2.09 x 10—* [ 7.59 x 10—2
40 x 40 | consistent | 1.39 x 10~* | 5.78 x 103
20 x 20 [row-sum [1.22 x 10~ [2.48 x 107
25 x 25 |row-sum |6.20x 10~%|1.56 x 10~2
30 x 30 |row-sum |3.55x 10~%|1.07 x 10—2
35 x 35 |row-sum |2.22x107%|7.78 x 102
40 x 40 |row-sum |[1.48 x 10~*|5.90x 10—2
20 x 20 |Lobatto [1.17x 1072 [2.43 x 10~2
25 x 25 | Lobatto |5.91 x 10~%|1.52 x 10—2
30 x 30 | Lobatto |[3.37 x10~%|1.04 x 102
35 x 35 | Lobatto |2.10x 10™%|7.61 x 10™2
40 x 40 | Lobatto |1.40x 10~%*|[579x 10~3

The results presented in Table 1 and Figure 3 indi-
cate the anticipated rates of spatial convergence were
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Figure 3: Ly AND h; ERROR NORMS VER-

SUS NUMBER OF ELEMENTS FOR QUADRATIC-
VELOCITY/LINEAR-PRESSURE ELEMENTS.

achieved. Mass lumping had no effect on the conver-
gence order and little effect on the magnitude of the
errors.

The error in the Ly norm for GLL integration was
only about 1% greater than that resulting from the
consistent mass matrix. This is clearly an accept-
able loss in accuracy for many applications, given the
substantial savings in computational cost. The use of
row—sum lumping lead to an increase typically around
5% over the consistent matrix results. While this is
also an acceptable error in most cases, the results
for row—sum lumping were always worse than those
obtained using GLL integration to obtain a diagonal
mass matrix.

The ki error norm showed similar behaviour to
the Ly error norm. These results indicate that. for
the quadratic-velocity/linear—pressure element fam-
ily, the use of GLL integration to form a diagonal
mass matrix is slightly preferable to applying row-
sum lumping to a mass matrix formed using standard
Gauss—Legendre integration.

EFFECT OF ELEMENT ORDER ON MASS LUMP-
ING ERROR

The results in the previous section were specific
to quadratic—velocity /linear—pressure elements. To
examine the relationship between element order and
mass lumping, results are compared for the three dif-
ferent element types given in Table 2, with two dif-
ferent mesh sizes also being compared. The coarser
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mesh had 61 x 61 node points, corresponding to
60 x 60 linear elements, 30 x 30 quadratic elements,
and 20 x 20 cubic elements. The finer mesh had
81 x 81 node points, giving 80 x 80 linear elements,
40 x 40 quadratic elements, and 27 x 27 cubic ele-
ments. Again, the time step sizes were selected to
ensure spatial convergence errors dominated tempo-

ral errors.

Table 2: EFFECT OF ELEMENT ORDER ON MASS

LUMPING ERRORS

Elements Mass Ly h1
Matrix

Linear—velocity/constant—pressure elements

60 x 60 | consistent | 8.64 x 1072 [1.90 x 101
60 x 60 |row-sum |8.62 x 10~ [1.90 x 10~
60 x 60 |Lobatto |8.62x 1072 |1.90x% 10~
80 X 80 | consistent|5.03 x 10~3 [1.42 x 10-1
80 x 80 |row-sum |5.02 x 1072 |1.42 x 10~}
80 x 80 | Lobatto |5.02 % 10~3 [1.42 x 10~
Quadratic—velocity /linear-pressure elements

30 x 30 | consistent | 3.34 x 10~* [ 1.04 x 10~ 2
30 x 30 |row-sum |3.55x 10~* | 1.07 x 10—2
30 x 30 | Lobatto |3.37x 10~*|1.04 x 10~2
40 % 40 | consistent | 1.39 x 10~% [ 5.78 x 10—
40 x 40 |row-sum |1.48 x 10™* | 5.90 x 10—°
40 x 40 | Lobatto |1.40x 10—%|5.79 x 10—2
Cubic—velocity /quadratic—pressure elements

20 x 20 | consistent | 6.57 x 10~° [ 1.73 x 10~2
20 x 20 |row-sum |6.30x 10—*%|1.31 x 102
20 x 20 |Lobatto |6.71x 10~%|1.38 x 1072
27 X 27 | consistent | 2.10 x 10~5 [ 7.33 x 10~*%
27 x 27 |row-sum |2.66x 10~*|7.40 x 102
27 x 27 | Lobatto |2.82x 10~*|7.69 x 10~2

For each of the element families, the results pro-
duced by row-sum lumping and GLL element quadra-
ture in the mass matrix were very similar.

For the linear elements, there was virtually no
degradation of the solution accuracy when a diagonal
matrix was used. This indicates that mass lumping is
a viable option when using linear—velocity/constant—
pressure elements for solutions of the Navier-Stokes
equations.

The use of a diagonal matrix with the quadratic—
velocity elements produced very small degradation
in accuracy. As was the case for linear—velocity ele-
ments, there was virtually no difference in error levels
for the two lumping schemes tested.

The most significant effect of mass lumping was ob-
served for the cubic elements. The use of either form
of mass lumping lead to large increases in solution
error. The L, and h; error norms were an order of
magnitude higher when either of the diagonal mass
matrix schemes were used.

The use of mass lumping schemes with the
cubic-velocity /quadratic-pressure elements lead to
increased solution errors. This loss of a "curacy would
be expected to get worse as the element order is in-
creased. For a simple rectangular domain, the cubic—
velocity element has a mass matrix bandwidth of 49
for two dimensions, compared to a bandwidth of 25

for the quadratic elements and 9 for the linear ele-
ments. As element bandwidth increases, the diagonal
form of the assembled matrix will become a poorer
approximation of the consistent matrix, and further
deterioration in solution accuracy will result. For sim-
ple rectangular domains where no more than four ele-
ments share the one node—point, the assembled band-
width is given by (2 x N +1)? where N is the element
order. In three dimensions the bandwidth is of or-
der N? rather than N2, hence the effects of using a
diagonal mass matrix are expected to be more severe.

CONCLUSIONS

The use of a diagonal mass matrix does not lead
to any significant degradation of solution accuracy
when used with linear—velocity /constant—pressure or
quadratic—velocity/linear—pressure elements in two
dimensions. The decrease in computational cost
when using the diagonal matrix makes this an at-
tractive choice for unsteady, incompressible Navier—
Stokes solvers.

The consistent mass matrix should be used with
cubic-velocity /quadratic—pressure elements because
diagonal forms of the matrix lead to marked degra-
dation in the solution accuracy.

In all cases tested, there was little observable dif-
ference in the levels of additional error produced by
either of the two lumping schemes.
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