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ABSTRACT

The attached eddy hypothesis is considered here for
boundary layers with arbitrary streamwise pressure
gradients. It is found that in order to obtain the
correct quantitative results for all components of the
Reynolds stresses, two basic types of eddy structure
geometries are required. The first type, called type-
A, is interpreted to give a “wall structure” and the
second referred to as type-B gives a “wake structure”.
This is in analogy with the conventional mean velocity
formulation of Coles where the velocity is decomposed
into a law of the wall and a law of the wake. If the
above mean velocity formulation is accepted then in
principle, once the eddy geometries are fixed for the
two eddy types, all Reynolds stresses and associated
spectra contributed from the attached eddies can be
computed without any further empirical constants.

INTRODUCTION

This paper describes extensions to the work on the
attached eddy hypothesis of Townsend (1976) and the
model based on this developed at Melbourne by Perry
and various co-workers. In most past work the eddies
in the attached eddy hypothesis were used only no-
tionally to illustrate functional forms and trends and
to aid in dimensional arguments. No serious attempt
to produce gquantitative results has been made. To
do this would require a knowledge of precise eddy
shapes. In this paper some tentative shapes are tried
and quantitative comparisons are made with data.
Although precise shapes for representative eddies are
not known and probably will never be known, the au-
thors are convinced that definite conclusions can be
drawn concerning important gross properties of the

1A more complete version of this work will appear in
Perry & Marusic (1995) and Marusic & Perry (1995).

attached eddy shapes.

The important departures in thinking about the
attached eddy hypothesis developed here stems from
attempting to describe quantitatively all stress com-
ponents and associated spectra for boundary layers
with streamwise pressure gradients. It is only re-
cently that such data has become available and it is
presented here for comparison.
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Figure 1: Sketch of a representative attached eddy.

By the term attached eddies we mean a set of ge-
ometrically similar eddies consisting of a range of
length scales with individual length scales propor-
tional to the distance at which the eddy is located
from, or extends above, the wall. The essential find-
ing here is that there are two types of attached eddies
which are responsible for most of the turbulent ki-
netic energy and Reynolds shear stresses. These will
be referred to as type-A and type-B eddies. In all
previous work only type-A eddies were used in the
modelling. See Perry & Marusic (1995) and Marusic
& Perry (1995) for a complete describe of the limi-
tations of using type-A eddies alone. Figure 1 shows
schematically a representative type-A attached eddy
and defines the co-ordinate system to be used in this

paper.
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For type-A eddies, the vortex lines extend to the
wall while for type-B the vortex lines undulate in the
spanwise direction but do not reach the boundary. It
is tentatively proposed here that the type-A eddies
are responsible for a universal wall structure and for
the mean-flow logarithmic law of the wall, which here
extends throughout the layer, whereas type-B struc-
tures produce a wake structure (which contributes to
“non-universal” turbulence intensities in the wall re-
gion) and are responsible for the mean flow wake com-
ponent. This is consistent with the ideas expressed
by Coles (1956,1957) who was concerned only with
mean velocities. The wall structure is identical to the
“pure wall” flow which occurs in equilibrium sink flow
where the Coles wake factor, Il is zero. Figure 2 shows
a schematic summary of this two part model. From
this hopefully a unified theory can be constructed,
valid for favourable, zero and adverse pressure gradi-
ent flows.
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Figure 2: Two part model.

MODEL FORMULATION

Once the representative eddy shapes for type-A
and type-B have been chosen, a calculation of the
cross-stream vorticity function, f[z/6], the eddy in-
tensity functions, I;j[z/6], and the eddy spectral
functions, Gjj [k1z, 2/6] can be made for each eddy.
These are functions of eddy geometry alone and are
obtained from Biot-Savart law calculated velocity sig-
natures. See Perry & Marusic (1995) for details on
calculating these terms.

Estimates of the gradient of mean flow, Reynolds
stresses and spectra are obtained by firstly consid-
ering arrays of randomly distributed representative
eddies distributed over the surface with an average
density proportional to 1/62. The contribitions are
considered from a range of scales ranging from the

smallest length scale §; = O(100zU, /v) to &, the
boundary layer thickness. A probability density func-
tion for eddy length scales 6 is included with the func-
tion Q[6/6.] which indicates the deviation from an -1
power law p.d.f. A further weighting function T'[6/6.]
is also included to account for velocity scale variations
between the arrays or hierarchies of different length
scales. This results in the following integrals
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Here U is the mean streamwise velocity, U, is
the wall shear velocity and ®;;[k;z] is the spectra
for the Reynolds stress u;u; per non-dimensional
wavenumber k;2. By using the logaritnmic variables:
A = log[é/z], Ag = log[é./z] and Ay = log[6;/z]
the above equation are transformed into the following
convolution equations

dU” / h[Ale™ T[A — Ag] w[A — Ag] dA,
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where Up = (U1 — U)/U;, Uy is the freestream ve-
locity, w[A — Ag] = D[§/6.], T[A — Ag] = Q[8/6.],
WA = f12/8), oD = Lglz/8], gilon, Al =
klzG,-J-[klz, z/8], ‘I’,’j[az] = klzq),'j[klz], and a, =
log[k1z]. The functions w and T switch to zero when
A < A and A > Ag. This effectively controls the
limits of the integration.

The contributions from the type-A and type-B
structures simply add together to form the final com-
posite result, i.e.

jf\fi) = (dUD)A (dUD )B, (1)
ut,;j _ (u uJ) " (ua';j Ve, (2)
U, [e;] e ij[az])A + (‘I’ij[az])B_ (3)

U? U? U2
Shear stress distribution
In order to develop the model further, analytical

expressions for the shear stress distribution are used.
Such an expression is given by Perry, Marusic & Li
(1994) in the form

= filn, 11, 8]+ g1[n, I, SJC + g2[n, I, S]B (4)
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Figure 3: Type-A and type-B eddy structures chosen
for calculation. The type-B structure is an ensemblage
of the above with their corresponding "reflections” in the
z — z plane (not shown here). rq/é = 0.05 in all cases;
Gaussian distribution of vorticity is assumed in the vortex
tubes.

where 7 = z/b., 7o is the wall shear stress, II is
the Coles wake factor, S = Uy /U, ( = §6.d1l/dz,
and B = (6*/7)(dP/dz). All of these terms are
obtained from the mean flow. Equation (4) was de-
rived by using Coles (1956) law of the wall and wake
together with the two-dimensional mean streamwise
momentum and continuity equations. As shown in
figure 2, the distribution for shear stress is assumed
to be universal for the “wall structure” (case II = 0).
This is equivalent to universal “sink” flow and (4)
reduces to

()4 =1=n+nlogh]. (5)

COMPARISON OF MODEL WITH EXPERIMENT

The model is used here to calculate the Reynolds
stresses and spectra given the mean flow conditions
II, S, ¢ and 3. Once these parameters are provided
and once the eddy shapes have been chosen (thus giv-
ing Jij and gi;) equations (4) and (5) and (2) are used
to solve (T2w)4 and (T?w)p using a deconvolution
procedure. Once these have been solved, they are
substitued back into equations (2) and (3) to solve
for the remaining Reynolds stresses and spectra.

Figure 4 shows a comparison of computed Reynolds
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Figure 4: Reynolds stresses (nonequilibrium data - see
Table 1) compared to attached eddy formulation using
type-A and type-B eddies.

z(mm) m 3 3 G Ry K-
1200 O 042 23.6 0.15 =~0.0 2206 1028
1800 7 0.68 254 0.94 0.65 3153 1203
2240 o 1.19 28.1 2.18 1.45 4155 1234
2640 A 1.87 31.5 4.64 290 5395 1265
2880 <l 2.46 34.5 8.01 4.48 6395 1280
3080 < 3.23 38.40 15.32 7.16 7257 1253

Table 1: Experimental mean flow parameters (Marusic
(1991) 10APG flow). Ry = 68U, /v and K, = 8.U; Jv.

stresses for the data described in Table 1 using type-
A and type-B eddy shapes shown in figure 3. The
type-B eddy shapes are an approximation to an span-
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Figure 5: Premultiplied streamwise spectra from model
and authors' data. (a) II = 0.42 (10APG) flow case.
z/6, = 0.10, 0.17, 0.27, 0.39, 0.54, 0.72, 0.93. (b)
IT = 3.23 (10APG) flow case, as in (a) with extra level
zfé6., = 0.05.

wise undulating structure. From Table 1, the ex-
perimental data is seen to be far from “equilib-
rium” with ( = Sé.dIl/dz values increasing with
streamwise distance. The experimental results in-
clude both stationary(unshaded symbols) and flying
hot-wire (shaded symbols) measurements - see Maru-

sic (1991) for further details.

The agreement between the experiment and model
is seen to be good. Perry & Marusic (1995) and Maru-
sic & Perry (1995) have compared the model to addi-
tional experimental data including equilibrium data
flow cases. In all cases agreement with the Reynolds
stresses appears to be of good quality. Correspond-
ing spectra are also compared in figure (5). Here,
although the model shows excellent qualitative agree-
ment with the data, some quantitative differences are
noted. This would suggest that the tentative shapes
shown in figure 3 are not quite right. Further refine-
ment of eddy shape would consequently be required in
any further studies although it would appear that the
gross properties of the representative eddies shown in
figure 3 are correct.

An additional unknown which prevents the precise
eddy shapes to be known at this stage are the high
wavenumber contributions which are missing in this
“inviscid” model. Perry, Henbest & Chong (1986)
have discussed the role of possible further structures
which contribute to the high wavenumber motions.
These will be collectively referred to as type-C eddies.
These are probably detached eddies, i.e. their length
scale is not related directly to the distance they are
located from the wall. The eddies in the Kolmogorov
inertial subrange and dissipation range form a subset
of type-C structures. Tentative empirical estimates
of the approximate type-C contributions are indicted
on figure 4.

Resolving this high wavenumber discrepancy re-
mains one of the problems yet to be solved for
completing the model. However, if closure requires
only the connection between velocity defect shapes,
Reynolds shear stresses and other quantities associ-
ated with low wavenumber phenomena, this may not
be an important drawback.
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